Lemma 39.9.9. Let $k$ be a field. Let $A$ be a nonzero abelian variety over $k$. Then $[d] : A \to A$ is étale if and only if $d$ is invertible in $k$.
Multiplication by an integer on an abelian variety is an etale morphism if and only if the integer is invertible in the base field.
Proof. Observe that $[d](x + y) = [d](x) + [d](y)$. Since translation by a point is an automorphism of $A$, we see that the set of points where $[d] : A \to A$ is étale is either empty or equal to $A$ (some details omitted). Thus it suffices to check whether $[d]$ is étale at the unit $e \in A(k)$. Since we know that $[d]$ is finite locally free (Lemma 39.9.8) to see that it is étale at $e$ is equivalent to proving that $\text{d}[d] : T_{A/k, e} \to T_{A/k, e}$ is injective. See Varieties, Lemma 33.16.8 and Morphisms, Lemma 29.36.16. By Lemma 39.6.4 we see that $\text{d}[d]$ is given by multiplication by $d$ on $T_{A/k, e}$. $\square$
Comments (3)
Comment #3035 by Brian Lawrence on
Comment #5364 by BCnrd on
Comment #5601 by Johan on