Let $A$ be a ring and let $I \subset A$ be a finitely generated ideal. Set $Z = V(I) \subset \mathop{\mathrm{Spec}}(A)$. Recall that (47.8.3.1) is the functor

Namely, given a complex of $A$-modules $K^\bullet $ the canonical map $R\Gamma _ I(K^\bullet ) \to K^\bullet $ in $D(A)$ factors (uniquely) through $R\Gamma _ Z(K^\bullet )$ as $R\Gamma _ I(K^\bullet )$ has $I$-power torsion cohomology modules (see Lemma 47.8.1). In general this map is not an isomorphism (we've seen this in Lemma 47.8.4).

**Proof.**
A formal argument, which we omit, shows that it suffices to prove (1).

Let $M$ be an $I$-power torsion $A$-module. Choose an embedding $M \to J$ into an injective $A$-module. Then $J[I^\infty ]$ is an injective $A$-module, see Lemma 47.3.9, and we obtain an embedding $M \to J[I^\infty ]$. Thus every $I$-power torsion module has an injective resolution $M \to J^\bullet $ with $J^ n$ also $I$-power torsion. It follows that $R\Gamma _ I(M) = M$ (this is not a triviality and this is not true in general if $A$ is not Noetherian). Next, suppose that $K \in D_{I^\infty \text{-torsion}}^+(A)$. Then the spectral sequence

\[ R^ q\Gamma _ I(H^ p(K)) \Rightarrow R^{p + q}\Gamma _ I(K) \]

(Derived Categories, Lemma 13.21.3) converges and above we have seen that only the terms with $q = 0$ are nonzero. Thus we see that $R\Gamma _ I(K) \to K$ is an isomorphism.

Suppose $K$ is an arbitrary object of $D_{I^\infty \text{-torsion}}(A)$. We have

\[ R^ q\Gamma _ I(K) = \mathop{\mathrm{colim}}\nolimits \mathop{\mathrm{Ext}}\nolimits ^ q_ A(A/I^ n, K) \]

by Lemma 47.8.2. Choose $f_1, \ldots , f_ r \in A$ generating $I$. Let $K_ n^\bullet = K(A, f_1^ n, \ldots , f_ r^ n)$ be the Koszul complex with terms in degrees $-r, \ldots , 0$. Since the pro-objects $\{ A/I^ n\} $ and $\{ K_ n^\bullet \} $ in $D(A)$ are the same by More on Algebra, Lemma 15.94.1, we see that

\[ R^ q\Gamma _ I(K) = \mathop{\mathrm{colim}}\nolimits \mathop{\mathrm{Ext}}\nolimits ^ q_ A(K_ n^\bullet , K) \]

Pick any complex $K^\bullet $ of $A$-modules representing $K$. Since $K_ n^\bullet $ is a finite complex of finite free modules we see that

\[ \mathop{\mathrm{Ext}}\nolimits ^ q_ A(K_ n, K) = H^ q(\text{Tot}((K_ n^\bullet )^\vee \otimes _ A K^\bullet )) \]

where $(K_ n^\bullet )^\vee $ is the dual of the complex $K_ n^\bullet $. See More on Algebra, Lemma 15.73.2. As $(K_ n^\bullet )^\vee $ is a complex of finite free $A$-modules sitting in degrees $0, \ldots , r$ we see that the terms of the complex $\text{Tot}((K_ n^\bullet )^\vee \otimes _ A K^\bullet )$ are the same as the terms of the complex $\text{Tot}((K_ n^\bullet )^\vee \otimes _ A \tau _{\geq q - r - 2} K^\bullet )$ in degrees $q - 1$ and higher. Hence we see that

\[ \mathop{\mathrm{Ext}}\nolimits ^ q_ A(K_ n, K) = \text{Ext}^ q_ A(K_ n, \tau _{\geq q - r - 2}K) \]

for all $n$. It follows that

\[ R^ q\Gamma _ I(K) = R^ q\Gamma _ I(\tau _{\geq q - r - 2}K) = H^ q(\tau _{\geq q - r - 2}K) = H^ q(K) \]

Thus we see that the map $R\Gamma _ I(K) \to K$ is an isomorphism.
$\square$

Lemma 47.10.2. Let $A$ be a Noetherian ring and let $I = (f_1, \ldots , f_ r)$ be an ideal of $A$. Set $Z = V(I) \subset \mathop{\mathrm{Spec}}(A)$. There are canonical isomorphisms

\[ R\Gamma _ I(A) \to (A \to \prod \nolimits _{i_0} A_{f_{i_0}} \to \prod \nolimits _{i_0 < i_1} A_{f_{i_0}f_{i_1}} \to \ldots \to A_{f_1\ldots f_ r}) \to R\Gamma _ Z(A) \]

in $D(A)$. If $M$ is an $A$-module, then we have similarly

\[ R\Gamma _ I(M) \cong (M \to \prod \nolimits _{i_0} M_{f_{i_0}} \to \prod \nolimits _{i_0 < i_1} M_{f_{i_0}f_{i_1}} \to \ldots \to M_{f_1\ldots f_ r}) \cong R\Gamma _ Z(M) \]

in $D(A)$.

## Comments (0)