** Trivial duality for systems of perfect objects. **

Lemma 15.74.16. Let $A$ be a ring. Let $(K_ n)_{n \in \mathbf{N}}$ be a system of perfect objects of $D(A)$. Let $K = \text{hocolim} K_ n$ be the derived colimit (Derived Categories, Definition 13.33.1). Then for any object $E$ of $D(A)$ we have

\[ R\mathop{\mathrm{Hom}}\nolimits _ A(K, E) = R\mathop{\mathrm{lim}}\nolimits E \otimes ^\mathbf {L}_ A K_ n^\vee \]

where $(K_ n^\vee )$ is the inverse system of dual perfect complexes.

**Proof.**
By Lemma 15.74.15 we have $R\mathop{\mathrm{lim}}\nolimits E \otimes ^\mathbf {L}_ A K_ n^\vee = R\mathop{\mathrm{lim}}\nolimits R\mathop{\mathrm{Hom}}\nolimits _ A(K_ n, E)$ which fits into the distinguished triangle

\[ R\mathop{\mathrm{lim}}\nolimits R\mathop{\mathrm{Hom}}\nolimits _ A(K_ n, E) \to \prod R\mathop{\mathrm{Hom}}\nolimits _ A(K_ n, E) \to \prod R\mathop{\mathrm{Hom}}\nolimits _ A(K_ n, E) \]

Because $K$ similarly fits into the distinguished triangle $\bigoplus K_ n \to \bigoplus K_ n \to K$ it suffices to show that $\prod R\mathop{\mathrm{Hom}}\nolimits _ A(K_ n, E) = R\mathop{\mathrm{Hom}}\nolimits _ A(\bigoplus K_ n, E)$. This is a formal consequence of (15.73.0.1) and the fact that derived tensor product commutes with direct sums.
$\square$

## Comments (0)

There are also: