The Stacks project

Lemma 20.37.4. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $(\mathcal{F}_ n)$ be an inverse system of $\mathcal{O}_ X$-modules. Let $\mathcal{B}$ be a set of opens of $X$. Assume

  1. every open of $X$ has a covering whose members are elements of $\mathcal{B}$,

  2. $H^ p(U, \mathcal{F}_ n) = 0$ for $p > 0$ and $U \in \mathcal{B}$,

  3. the inverse system $\mathcal{F}_ n(U)$ has vanishing $R^1\mathop{\mathrm{lim}}\nolimits $ for $U \in \mathcal{B}$.

Then $R\mathop{\mathrm{lim}}\nolimits \mathcal{F}_ n = \mathop{\mathrm{lim}}\nolimits \mathcal{F}_ n$ and we have $H^ p(U, \mathop{\mathrm{lim}}\nolimits \mathcal{F}_ n) = 0$ for $p > 0$ and $U \in \mathcal{B}$.

Proof. Set $K_ n = \mathcal{F}_ n$ and $K = R\mathop{\mathrm{lim}}\nolimits \mathcal{F}_ n$. Using the notation of Remark 20.37.3 and assumption (2) we see that for $U \in \mathcal{B}$ we have $\underline{\mathcal{H}}_ n^ m(U) = 0$ when $m \not= 0$ and $\underline{\mathcal{H}}_ n^0(U) = \mathcal{F}_ n(U)$. From Equation (20.37.3.1) and assumption (3) we see that $\underline{\mathcal{H}}^ m(U) = 0$ when $m \not= 0$ and equal to $\mathop{\mathrm{lim}}\nolimits \mathcal{F}_ n(U)$ when $m = 0$. Sheafifying using (1) we find that $\mathcal{H}^ m = 0$ when $m \not= 0$ and equal to $\mathop{\mathrm{lim}}\nolimits \mathcal{F}_ n$ when $m = 0$. Hence $K = \mathop{\mathrm{lim}}\nolimits \mathcal{F}_ n$. Since $H^ m(U, K) = \underline{\mathcal{H}}^ m(U) = 0$ for $m > 0$ (see above) we see that the second assertion holds. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BKS. Beware of the difference between the letter 'O' and the digit '0'.