Remark 20.35.3. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $(K_ n)$ be an inverse system in $D(\mathcal{O}_ X)$. Set $K = R\mathop{\mathrm{lim}}\nolimits K_ n$. For each $n$ and $m$ let $\mathcal{H}^ m_ n = H^ m(K_ n)$ be the $m$th cohomology sheaf of $K_ n$ and similarly set $\mathcal{H}^ m = H^ m(K)$. Let us denote $\underline{\mathcal{H}}^ m_ n$ the presheaf

Similarly we set $\underline{\mathcal{H}}^ m(U) = H^ m(U, K)$. By Lemma 20.32.3 we see that $\mathcal{H}^ m_ n$ is the sheafification of $\underline{\mathcal{H}}^ m_ n$ and $\mathcal{H}^ m$ is the sheafification of $\underline{\mathcal{H}}^ m$. Here is a diagram

In general it may not be the case that $\mathop{\mathrm{lim}}\nolimits \mathcal{H}^ m_ n$ is the sheafification of $\mathop{\mathrm{lim}}\nolimits \underline{\mathcal{H}}^ m_ n$. If $U \subset X$ is an open, then we have short exact sequences

by Lemma 20.35.1.

## Comments (0)