Lemma 20.35.1. Let $(X, \mathcal{O}_ X)$ be a ringed space. For $U \subset X$ open the functor $R\Gamma (U, -)$ commutes with $R\mathop{\mathrm{lim}}\nolimits $. Moreover, there are short exact sequences

\[ 0 \to R^1\mathop{\mathrm{lim}}\nolimits H^{m - 1}(U, K_ n) \to H^ m(U, R\mathop{\mathrm{lim}}\nolimits K_ n) \to \mathop{\mathrm{lim}}\nolimits H^ m(U, K_ n) \to 0 \]

for any inverse system $(K_ n)$ in $D(\mathcal{O}_ X)$ and any $m \in \mathbf{Z}$.

**Proof.**
The first statement follows from Injectives, Lemma 19.13.6. Then we may apply More on Algebra, Remark 15.85.9 to $R\mathop{\mathrm{lim}}\nolimits R\Gamma (U, K_ n) = R\Gamma (U, R\mathop{\mathrm{lim}}\nolimits K_ n)$ to get the short exact sequences.
$\square$

## Comments (0)