Lemma 20.37.1. Let (X, \mathcal{O}_ X) be a ringed space. For U \subset X open the functor R\Gamma (U, -) commutes with R\mathop{\mathrm{lim}}\nolimits . Moreover, there are short exact sequences
0 \to R^1\mathop{\mathrm{lim}}\nolimits H^{m - 1}(U, K_ n) \to H^ m(U, R\mathop{\mathrm{lim}}\nolimits K_ n) \to \mathop{\mathrm{lim}}\nolimits H^ m(U, K_ n) \to 0
for any inverse system (K_ n) in D(\mathcal{O}_ X) and any m \in \mathbf{Z}.
Proof.
The first statement follows from Injectives, Lemma 19.13.6. Then we may apply More on Algebra, Remark 15.86.10 to R\mathop{\mathrm{lim}}\nolimits R\Gamma (U, K_ n) = R\Gamma (U, R\mathop{\mathrm{lim}}\nolimits K_ n) to get the short exact sequences.
\square
Comments (0)