Lemma 37.65.2. Let $Z \to S$ and $X \to S$ be morphisms of schemes. If $Z \to S$ is finite locally free and $X \to S$ is affine, then $\mathit{Mor}_ S(Z, X)$ is representable by a scheme affine over $S$.

**Proof.**
Choose an affine open covering $S = \bigcup U_ i$ such that $\Gamma (Z \times _ S U_ i, \mathcal{O}_{Z \times _ S U_ i})$ is finite free over $\mathcal{O}_ S(U_ i)$. Let $F_ i \subset \mathit{Mor}_ S(Z, X)$ be the subfunctor which assigns to $T/S$ the empty set if $T \to S$ does not factor through $U_ i$ and $\mathit{Mor}_ S(Z, X)(T)$ otherwise. Then the collection of these subfunctors satisfy the conditions (2)(a), (2)(b), (2)(c) of Schemes, Lemma 26.15.4 which proves the lemma. Condition (2)(a) follows from Lemma 37.65.1 and the other two follow from straightforward arguments.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)