Lemma 15.90.14. Let $(R \to R', f)$ be a glueing pair. Then $\text{Tor}^ R_1(R', f^ n R) = 0$ for each $n > 0$.

**Proof.**
From the exact sequence $0 \to R[f^ n] \to R \to f^ n R \to 0$ we see that it suffices to check that $R[f^ n] \otimes _ R R' \to R'$ is injective. By Lemma 15.90.2 we have $R[f^ n] \otimes _ R R' = R[f^ n]$ and by Lemma 15.90.7 we see that $R[f^ n] \to R'$ is injective as $(R \to R', f)$ is a glueing pair.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: