Remark 15.90.18. Let $(R \to R', f)$ be a glueing pair. Let $M$ be an $R$-module that is not necessarily glueable for $(R \to R', f)$. Setting $M' = M \otimes _ R R'$ and $M_1 = M_ f$ we obtain the glueing datum $\text{Can}(M) = (M', M_1, \text{can})$. Then $\tilde M = H^0(M', M_1, \text{can})$ is an $R$-module that is glueable for $(R \to R', f)$ and the canonical map $M \to \tilde M$ gives isomorphisms $M \otimes _ R R' \to \tilde M \otimes _ R R'$ and $M_ f \to \tilde M_ f$, see Theorem 15.90.17. From the exactness of the sequences

and

we conclude that the map $M \to \tilde M$ is surjective.

## Comments (0)

There are also: