Lemma 15.116.6. Let $A \subset B$ be an extension of discrete valuation rings. Assume

1. the extension $L/K$ of fraction fields is separable,

2. $B$ is Nagata, and

3. there exists a solution for $A \subset B$.

Then there exists a separable solution for $A \subset B$.

Proof. The lemma is trivial if the characteristic of $K$ is zero; thus we may and do assume that the characteristic of $K$ is $p > 0$.

Let $K_2/K$ be a solution for $A \to B$. We will use induction on the inseparable degree $[K_2 : K]_ i$ (Fields, Definition 9.14.7) of $K_2/K$. If $[K_2 : K]_ i = 1$, then $K_2$ is separable over $K$ and we are done. If not, then there exists a subfield $K_2/K_1/K$ such that $K_2/K_1$ is purely inseparable of degree $p$ (Fields, Lemmas 9.14.6 and 9.14.5). By Lemma 15.116.5 there exists a separable extension $K_3/K_1$ which is a solution for $A \subset B$. Then $[K_3 : K]_ i = [K_1 : K]_ i = [K_2 : K]_ i/p$ (Fields, Lemma 9.14.9) is smaller and we conclude by induction. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).