Processing math: 100%

The Stacks project

Lemma 49.7.4. Let A be a ring. Let n \geq 1 and f_1, \ldots , f_ n \in A[x_1, \ldots , x_ n]. Set B = A[x_1, \ldots , x_ n]/(f_1, \ldots , f_ n). The Kähler different of B over A is the ideal of B generated by \det (\partial f_ i/\partial x_ j).

Proof. This is true because \Omega _{B/A} has a presentation

\bigoplus \nolimits _{i = 1, \ldots , n} B f_ i \xrightarrow {\text{d}} \bigoplus \nolimits _{j = 1, \ldots , n} B \text{d}x_ j \rightarrow \Omega _{B/A} \rightarrow 0

by Algebra, Lemma 10.131.9. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.