Lemma 49.12.1. Let $A \to P$ be a ring map. Let $f_1, \ldots , f_ n \in P$ be a Koszul regular sequence. Assume $B = P/(f_1, \ldots , f_ n)$ is flat over $A$. Let $g_1, \ldots , g_ n \in P \otimes _ A B$ be a Koszul regular sequence generating the kernel of the multiplication map $P \otimes _ A B \to B$. Write $f_ i \otimes 1 = \sum g_{ij} g_ j$. Then the annihilator of $\mathop{\mathrm{Ker}}(B \otimes _ A B \to B)$ is a principal ideal generated by the image of $\det (g_{ij})$.
[Appendix, Mazur-Roberts]
Proof.
The Koszul complex $K_\bullet = K(P, f_1, \ldots , f_ n)$ is a resolution of $B$ by finite free $P$-modules. The Koszul complex $M_\bullet = K(P \otimes _ A B, g_1, \ldots , g_ n)$ is a resolution of $B$ by finite free $P \otimes _ A B$-modules. There is a map of complexes
which in degree $1$ is given by the matrix $(g_{ij})$ and in degree $n$ by $\det (g_{ij})$. See More on Algebra, Lemma 15.28.3. As $B$ is a flat $A$-module, we can view $M_\bullet $ as a complex of flat $P$-modules (via $P \to P \otimes _ A B$, $p \mapsto p \otimes 1$). Thus we may use both complexes to compute $\text{Tor}_*^ P(B, B)$ and it follows that the displayed map defines a quasi-isomorphism after tensoring with $B$. It is clear that $H_ n(K_\bullet \otimes _ P B) = B$. On the other hand, $H_ n(M_\bullet \otimes _ P B)$ is the kernel of
Since $g_1, \ldots , g_ n$ generate the kernel of $B \otimes _ A B \to B$ this proves the lemma.
$\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)