Lemma 15.125.2. Let $(R, \mathfrak m)$ be a Noetherian local ring of dimension $1$. Let $x \in \mathfrak m$ be an element not contained in any minimal prime of $R$. Let $t$ be the number of minimal prime ideals of $R$. Then $t \leq \text{length}_ R(R/xR)$.
Proof. Let $\mathfrak p_1, \ldots , \mathfrak p_ t$ be the minimal prime ideals of $R$. Set $R' = R/\sqrt{0} = R/(\bigcap _{i = 1}^ t \mathfrak p_ i)$. We claim it suffices to prove the lemma for $R'$. Namely, it is clear that $R'$ has $t$ minimal primes too and $\text{length}_{R'}(R'/xR') = \text{length}_ R(R'/xR')$ is less than $\text{length}_ R(R/xR)$ as there is a surjection $R/xR \to R'/xR'$. Thus we may assume $R$ is reduced.
Assume $R$ is reduced with minimal primes $\mathfrak p_1, \ldots , \mathfrak p_ t$. This means there is an exact sequence
Here $Q$ is the cokernel of the first map. Write $M = \prod _{i = 1}^ t R/\mathfrak p_ i$. Localizing at $\mathfrak p_ j$ we see that
is surjective. Thus $Q_{\mathfrak p_ j} = 0$ for all $j$. We conclude that $\text{Supp}(Q) = \{ \mathfrak m\} $ as $\mathfrak m$ is the only prime of $R$ different from the $\mathfrak p_ i$. It follows that $Q$ has finite length (Algebra, Lemma 10.62.3). Since $\text{Supp}(Q) = \{ \mathfrak m\} $ we can pick an $n \gg 0$ such that $x^ n$ acts as $0$ on $Q$ (Algebra, Lemma 10.62.4). Now consider the diagram
where the vertical maps are multiplication by $x^ n$. This is injective on $R$ and on $M$ since $x$ is not contained in any of the $\mathfrak p_ i$. By the snake lemma (Algebra, Lemma 10.4.1), the following sequence is exact:
Hence we find that $\text{length}_ R(R/x^ nR) = \text{length}_ R(M/x^ nM)$ for large enough $n$. Writing $R_ i = R/\mathfrak p_ i$ we see that $\text{length}(M/x^ nM) = \sum _{i = 1}^ t \text{length}_ R(R_ i/x^ nR_ i)$. Applying Lemma 15.125.1 and the fact that $x$ is a nonzerodivisor on $R$ and $R_ i$, we conclude that
Since $\text{length}_{R_ i}(R_ i/x R_ i) \geq 1$ the lemma is proved. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)