Lemma 15.98.4. Let $R$ be a ring. Let $P^\bullet$ be a bounded above complex of projective $R$-modules. Let $K^\bullet$ be a K-flat complex of $R$-modules. If $P^\bullet$ is a perfect object of $D(R)$, then $\mathop{\mathrm{Hom}}\nolimits ^\bullet (P^\bullet , K^\bullet )$ is K-flat and represents $R\mathop{\mathrm{Hom}}\nolimits _ R(P^\bullet , K^\bullet )$.

Proof. The last statement is Lemma 15.73.2. Since $P^\bullet$ represents a perfect object, there exists a finite complex of finite projective $R$-modules $F^\bullet$ such that $P^\bullet$ and $F^\bullet$ are isomorphic in $D(R)$, see Definition 15.74.1. Then $P^\bullet$ and $F^\bullet$ are homotopy equivalent, see Derived Categories, Lemma 13.19.8. Then $\mathop{\mathrm{Hom}}\nolimits ^\bullet (P^\bullet , K^\bullet )$ and $\mathop{\mathrm{Hom}}\nolimits ^\bullet (F^\bullet , K^\bullet )$ are homotopy equivalent. Hence the first is K-flat if and only if the second is (follows from Definition 15.59.1 and Lemma 15.58.2). It is clear that

$\mathop{\mathrm{Hom}}\nolimits ^\bullet (F^\bullet , K^\bullet ) = \text{Tot}(E^\bullet \otimes _ R K^\bullet )$

where $E^\bullet$ is the dual complex to $F^\bullet$ with terms $E^ n = \mathop{\mathrm{Hom}}\nolimits _ R(F^{-n}, R)$, see Lemma 15.74.15 and its proof. Since $E^\bullet$ is a bounded complex of projectives we find that it is K-flat by Lemma 15.59.7. Then we conclude by Lemma 15.59.4. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).