The Stacks project

Lemma 10.43.8. Let $k'/k$ be a separable algebraic extension. Then there exists a multiplicative subset $S \subset k' \otimes _ k k'$ such that the multiplication map $k' \otimes _ k k' \to k'$ is identified with $k' \otimes _ k k' \to S^{-1}(k' \otimes _ k k')$.

Proof. First assume $k'/k$ is finite separable. Then $k' = k(\alpha )$, see Fields, Lemma 9.19.1. Let $P \in k[x]$ be the minimal polynomial of $\alpha $ over $k$. Then $P$ is an irreducible, separable, monic polynomial, see Fields, Section 9.12. Then $k'[x]/(P) \to k' \otimes _ k k'$, $\sum \alpha _ i x^ i \mapsto \alpha _ i \otimes \alpha ^ i$ is an isomorphism. We can factor $P = (x - \alpha ) Q$ in $k'[x]$ and since $P$ is separable we see that $Q(\alpha ) \not= 0$. Then it is clear that the multiplicative set $S'$ generated by $Q$ in $k'[x]/(P)$ works, i.e., that $k' = (S')^{-1}(k'[x]/(P))$. By transport of structure the image $S$ of $S'$ in $k' \otimes _ k k'$ works.

In the general case we write $k' = \bigcup k_ i$ as the union of its finite subfield extensions over $k$. For each $i$ there is a multiplicative subset $S_ i \subset k_ i \otimes _ k k_ i$ such that $k_ i = S_ i^{-1}(k_ i \otimes _ k k_ i)$. Then $S = \bigcup S_ i \subset k' \otimes _ k k'$ works. $\square$


Comments (2)

Comment #11259 by david on

Why is multiplicatively closed? If corresponds to the extension and to , it's not obvious that .

Comment #11264 by thesnakefromthelemma on

Re Comment #12259, the idea is presumably to take the multiplicative closure of the union.

One way to shore up the slight handwave at the end is to observe that given diagrams and natural transformation such that for all there exists a (multiplicative) subset such that the component is the (up to unique iso) localization of by , then the map is itself the (up to unique iso) localization of by (the multiplicative subset generated by) the union over of the image of under the relevant component of the universal cocone of .

This is (assuming I haven't made some mistake) not at all hard to show by straightforward universal property wrangling; at the moment I can't think of any cleverer argument.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0C2X. Beware of the difference between the letter 'O' and the digit '0'.