Lemma 53.19.5. Let $k$ be a field. Let $A = k[[x_1, \ldots , x_ n]]$. Let $I = (f_1, \ldots , f_ m) \subset A$ be an ideal. For any $r \geq 0$ the ideal in $A/I$ generated by the $r \times r$-minors of the matrix $(\partial f_ j/\partial x_ i)$ is independent of the choice of the generators of $I$ or the regular system of parameters $x_1, \ldots , x_ n$ of $A$.
Proof. The “correct” proof of this lemma is to prove that this ideal is the $(n - r)$th Fitting ideal of a module of continuous differentials of $A/I$ over $k$. Here is a direct proof. If $g_1, \ldots g_ l$ is a second set of generators of $I$, then we can write $g_ s = \sum a_{sj}f_ j$ and we have the equality of matrices
The final term is zero in $A/I$. By the Cauchy-Binet formula we see that the ideal of minors for the $g_ s$ is contained in the ideal for the $f_ j$. By symmetry these ideals are the same. If $y_1, \ldots , y_ n \in \mathfrak m_ A$ is a second regular system of parameters, then the matrix $(\partial y_ j/\partial x_ i)$ is invertible and we can use the chain rule for differentiation. Some details omitted. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)