The Stacks project

Lemma 53.19.6. Let $k$ be a field. Let $A = k[[x_1, \ldots , x_ n]]$. Let $I = (f_1, \ldots , f_ m) \subset \mathfrak m_ A$ be an ideal. The following are equivalent

  1. $k \to A/I$ is as in Lemma 53.19.3,

  2. $A/I$ is reduced and the $(n - 1) \times (n - 1)$ minors of the matrix $(\partial f_ j/\partial x_ i)$ generate $I + \mathfrak m_ A$,

  3. $\text{depth}(A/I) = 1$ and the $(n - 1) \times (n - 1)$ minors of the matrix $(\partial f_ j/\partial x_ i)$ generate $I + \mathfrak m_ A$.

Proof. By Lemma 53.19.5 we may change our system of coordinates and the choice of generators during the proof.

If (1) holds, then we may change coordinates such that $x_1, \ldots , x_{n - 2}$ map to zero in $A/I$ and $A/I = k[[x_{n - 1}, x_ n]]/(a x_{n - 1}^2 + b x_{n - 1}x_ n + c x_ n^2)$ for some nondegenerate quadric $a x_{n - 1}^2 + b x_{n - 1}x_ n + c x_ n^2$. Then we can explicitly compute to show that both (2) and (3) are true.

Assume the $(n - 1) \times (n - 1)$ minors of the matrix $(\partial f_ j/\partial x_ i)$ generate $I + \mathfrak m_ A$. Suppose that for some $i$ and $j$ the partial derivative $\partial f_ j/\partial x_ i$ is a unit in $A$. Then we may use the system of parameters $f_ j, x_1, \ldots , x_{i - 1}, \hat x_ i, x_{i + 1}, \ldots , x_ n$ and the generators $f_ j, f_1, \ldots , f_{j - 1}, \hat f_ j, f_{j + 1}, \ldots , f_ m$ of $I$. Then we get a regular system of parameters $x_1, \ldots , x_ n$ and generators $x_1, f_2, \ldots , f_ m$ of $I$. Next, we look for an $i \geq 2$ and $j \geq 2$ such that $\partial f_ j/\partial x_ i$ is a unit in $A$. If such a pair exists, then we can make a replacement as above and assume that we have a regular system of parameters $x_1, \ldots , x_ n$ and generators $x_1, x_2, f_3, \ldots , f_ m$ of $I$. Continuing, in finitely many steps we reach the situation where we have a regular system of parameters $x_1, \ldots , x_ n$ and generators $x_1, \ldots , x_ t, f_{t + 1}, \ldots , f_ m$ of $I$ such that $\partial f_ j/\partial x_ i \in \mathfrak m_ A$ for all $i, j \geq t + 1$.

In this case the matrix of partial derivatives has the following block shape

\[ \left( \begin{matrix} I_{t \times t} & * \\ 0 & \mathfrak m_ A \end{matrix} \right) \]

Hence every $(n - 1) \times (n - 1)$-minor is in $\mathfrak m_ A^{n - 1 - t}$. Note that $I \not= \mathfrak m_ A$ otherwise the ideal of minors would contain $1$. It follows that $n - 1 - t \leq 1$ because there is an element of $\mathfrak m_ A \setminus \mathfrak m_ A^2 + I$ (otherwise $I = \mathfrak m_ A$ by Nakayama). Thus $t \geq n - 2$. We have seen that $t \not= n$ above and similarly if $t = n - 1$, then there is an invertible $(n - 1) \times (n - 1)$-minor which is disallowed as well. Hence $t = n - 2$. Then $A/I$ is a quotient of $k[[x_{n - 1}, x_ n]]$ and Lemma 53.19.2 implies in both cases (2) and (3) that $I$ is generated by $x_1, \ldots , x_{n - 2}, f$ for some $f = f(x_{n - 1}, x_ n)$. In this case the condition on the minors exactly says that the quadratic term in $f$ is nondegenerate, i.e., $A/I$ is as in Lemma 53.19.3. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0C4C. Beware of the difference between the letter 'O' and the digit '0'.