Lemma 29.37.8. Let g : Y \to S and f : X \to Y be morphisms of schemes. Let \mathcal{M} be an invertible \mathcal{O}_ Y-module. Let \mathcal{L} be an invertible \mathcal{O}_ X-module. If S is quasi-compact, \mathcal{M} is g-ample, and \mathcal{L} is f-ample, then \mathcal{L} \otimes f^*\mathcal{M}^{\otimes a} is g \circ f-ample for a \gg 0.
Proof. Let S = \bigcup _{i = 1, \ldots , n} V_ i be a finite affine open covering. By Lemma 29.37.4 it suffices to prove that \mathcal{L} \otimes f^*\mathcal{M}^{\otimes a} is ample on (g \circ f)^{-1}(V_ i) for i = 1, \ldots , n. Thus the lemma follows from Lemma 29.37.7. \square
Comments (0)
There are also: