The Stacks project

Lemma 53.19.12. Let $K/k$ be an extension of fields. Let $X$ be a locally algebraic $k$-scheme of dimension $1$. Let $y \in X_ K$ be a point with image $x \in X$. The following are equivalent

  1. $x$ is a closed point of $X$ and a node, and

  2. $y$ is a closed point of $Y$ and a node.

Proof. If $x$ is a closed point of $X$, then $y$ is too (look at residue fields). But conversely, this need not be the case, i.e., it can happen that a closed point of $Y$ maps to a nonclosed point of $X$. However, in this case $y$ cannot be a node. Namely, then $X$ would be geometrically unibranch at $x$ (because $x$ would be a generic point of $X$ and $\mathcal{O}_{X, x}$ would be Artinian and any Artinian local ring is geometrically unibranch), hence $Y$ is geometrically unibranch at $y$ (Varieties, Lemma 33.40.3), which means that $y$ cannot be a node by Lemma 53.19.7. Thus we may and do assume that both $x$ and $y$ are closed points.

Choose algebraic closures $\overline{k}$, $\overline{K}$ and a map $\overline{k} \to \overline{K}$ extending the given map $k \to K$. Using the equivalence of (1) and (3) in Lemma 53.19.7 we reduce to the case where $k$ and $K$ are algebraically closed. In this case we can argue as in the proof of Lemma 53.19.7 that the geometric number of branches and $\delta $-invariants of $X$ at $x$ and $Y$ at $y$ are the same. Another argument can be given by choosing an isomorphism $k[[x_1, \ldots , x_ n]]/(g_1, \ldots , g_ m) \to \mathcal{O}_{X, x}^\wedge $ of $k$-algebras as in Varieties, Lemma 33.21.1. By Varieties, Lemma 33.21.2 this gives an isomorphism $K[[x_1, \ldots , x_ n]]/(g_1, \ldots , g_ m) \to \mathcal{O}_{Y, y}^\wedge $ of $K$-algebras. By definition we have to show that

\[ k[[x_1, \ldots , x_ n]]/(g_1, \ldots , g_ m) \cong k[[s, t]]/(st) \]

if and only if

\[ K[[x_1, \ldots , x_ n]]/(g_1, \ldots , g_ m) \cong K[[s, t]]/(st) \]

We encourage the reader to prove this for themselves. Since $k$ and $K$ are algebraically closed fields, this is the same as asking these rings to be as in Lemma 53.19.3. Via Lemma 53.19.6 this translates into a statement about the $(n - 1) \times (n - 1)$-minors of the matrix $(\partial g_ j/\partial x_ i)$ which is clearly independent of the field used. We omit the details. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0C56. Beware of the difference between the letter 'O' and the digit '0'.