Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 55.3.9. Let $n, m_ i, a_{ij}, w_ i, g_ i$ be a numerical type $T$. Assume $n$ is a $(-1)$-index. Then there is a numerical type $T'$ given by $n', m'_ i, a'_{ij}, w'_ i, g'_ i$ with

  1. $n' = n - 1$,

  2. $m'_ i = m_ i$,

  3. $a'_{ij} = a_{ij} - a_{in}a_{jn}/a_{nn}$,

  4. $w'_ i = w_ i/2$ if $a_{in}/w_ n$ even and $a_{in}/w_ i$ odd and $w'_ i = w_ i$ else,

  5. $g'_ i = \frac{w_ i}{w'_ i}(g_ i - 1) + 1 + \frac{a_{in}^2 - w_ na_{in}}{2w'_ iw_ n}$.

Moreover, we have $g = g'$.

Proof. Observe that $n > 1$ for example by Lemma 55.3.5 and hence $n' \geq 1$. We check conditions (1) – (5) of Definition 55.3.1 for $n', m'_ i, a'_{ij}, w'_ i, g'_ i$.

Condition (1) is immediate.

Condition (2). Symmetry of $A' = (a'_{ij})$ is immediate and since $a_{nn} < 0$ by Lemma 55.3.6 we see that $a'_{ij} \geq a_{ij} \geq 0$ if $i \not= j$.

Condition (3). Suppose that $I \subset \{ 1, \ldots , n - 1\} $ such that $a'_{ii'} = 0$ for $i \in I$ and $i' \in \{ 1, \ldots , n - 1\} \setminus I$. Then we see that for each $i \in I$ and $i' \in I'$ we have $a_{in}a_{i'n} = 0$. Thus either $a_{in} = 0$ for all $i \in I$ and $I \subset \{ 1, \ldots , n\} $ is a contradiction for property (3) for $T$, or $a_{i'n} = 0$ for all $i' \in \{ 1, \ldots , n - 1\} \setminus I$ and $I \cup \{ n\} \subset \{ 1, \ldots , n\} $ is a contradiction for property (3) of $T$. Hence (3) holds for $T'$.

Condition (4). We compute

\[ \sum \nolimits _{j = 1}^{n - 1} a'_{ij}m_ j = \sum \nolimits _{j = 1}^{n - 1} (a_{ij}m_ j - \frac{a_{in}a_{jn}m_ j}{a_{nn}}) = - a_{in}m_ n - \frac{a_{in}}{a_{nn}}(-a_{nn}m_ n) = 0 \]

as desired.

Condition (5). We have to show that $w'_ i$ divides $a_{in}a_{jn}/a_{nn}$. This is clear because $a_{nn} = -w_ n$ and $w_ n | a_{jn}$ and $w_ i | a_{in}$.

To show that $g = g'$ we first write

\begin{align*} g & = 1 + \sum \nolimits _{i = 1}^ n m_ i(w_ i(g_ i - 1) - \frac{1}{2}a_{ii}) \\ & = 1 + \sum \nolimits _{i = 1}^{n - 1} m_ i(w_ i(g_ i - 1) - \frac{1}{2}a_{ii}) -\frac{1}{2}m_ nw_ n \\ & = 1 + \sum \nolimits _{i = 1}^{n - 1} m_ i(w_ i(g_ i - 1) - \frac{1}{2}a_{ii} - \frac{1}{2}a_{in}) \end{align*}

Comparing with the expression for $g'$ we see that it suffices if

\[ w'_ i(g'_ i - 1) - \frac{1}{2}a'_{ii} = w_ i(g_ i - 1) - \frac{1}{2}a_{in} - \frac{1}{2}a_{ii} \]

for $i \leq n - 1$. In other words, we have

\[ g'_ i = \frac{2w_ i(g_ i - 1) - a_{in} - a_{ii} + a'_{ii} + 2w'_ i}{2w'_ i} = \frac{w_ i}{w'_ i}(g_ i - 1) + 1 + \frac{a_{in}^2 - w_ na_{in}}{2w'_ iw_ n} \]

It is elementary to check that this is an integer $\geq 0$ if we choose $w'_ i$ as in (4). $\square$


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.