Lemma 55.3.9. Let n, m_ i, a_{ij}, w_ i, g_ i be a numerical type T. Assume n is a (-1)-index. Then there is a numerical type T' given by n', m'_ i, a'_{ij}, w'_ i, g'_ i with
n' = n - 1,
m'_ i = m_ i,
a'_{ij} = a_{ij} - a_{in}a_{jn}/a_{nn},
w'_ i = w_ i/2 if a_{in}/w_ n even and a_{in}/w_ i odd and w'_ i = w_ i else,
g'_ i = \frac{w_ i}{w'_ i}(g_ i - 1) + 1 + \frac{a_{in}^2 - w_ na_{in}}{2w'_ iw_ n}.
Moreover, we have g = g'.
Proof.
Observe that n > 1 for example by Lemma 55.3.5 and hence n' \geq 1. We check conditions (1) – (5) of Definition 55.3.1 for n', m'_ i, a'_{ij}, w'_ i, g'_ i.
Condition (1) is immediate.
Condition (2). Symmetry of A' = (a'_{ij}) is immediate and since a_{nn} < 0 by Lemma 55.3.6 we see that a'_{ij} \geq a_{ij} \geq 0 if i \not= j.
Condition (3). Suppose that I \subset \{ 1, \ldots , n - 1\} such that a'_{ii'} = 0 for i \in I and i' \in \{ 1, \ldots , n - 1\} \setminus I. Then we see that for each i \in I and i' \in I' we have a_{in}a_{i'n} = 0. Thus either a_{in} = 0 for all i \in I and I \subset \{ 1, \ldots , n\} is a contradiction for property (3) for T, or a_{i'n} = 0 for all i' \in \{ 1, \ldots , n - 1\} \setminus I and I \cup \{ n\} \subset \{ 1, \ldots , n\} is a contradiction for property (3) of T. Hence (3) holds for T'.
Condition (4). We compute
\sum \nolimits _{j = 1}^{n - 1} a'_{ij}m_ j = \sum \nolimits _{j = 1}^{n - 1} (a_{ij}m_ j - \frac{a_{in}a_{jn}m_ j}{a_{nn}}) = - a_{in}m_ n - \frac{a_{in}}{a_{nn}}(-a_{nn}m_ n) = 0
as desired.
Condition (5). We have to show that w'_ i divides a_{in}a_{jn}/a_{nn}. This is clear because a_{nn} = -w_ n and w_ n | a_{jn} and w_ i | a_{in}.
To show that g = g' we first write
\begin{align*} g & = 1 + \sum \nolimits _{i = 1}^ n m_ i(w_ i(g_ i - 1) - \frac{1}{2}a_{ii}) \\ & = 1 + \sum \nolimits _{i = 1}^{n - 1} m_ i(w_ i(g_ i - 1) - \frac{1}{2}a_{ii}) -\frac{1}{2}m_ nw_ n \\ & = 1 + \sum \nolimits _{i = 1}^{n - 1} m_ i(w_ i(g_ i - 1) - \frac{1}{2}a_{ii} - \frac{1}{2}a_{in}) \end{align*}
Comparing with the expression for g' we see that it suffices if
w'_ i(g'_ i - 1) - \frac{1}{2}a'_{ii} = w_ i(g_ i - 1) - \frac{1}{2}a_{in} - \frac{1}{2}a_{ii}
for i \leq n - 1. In other words, we have
g'_ i = \frac{2w_ i(g_ i - 1) - a_{in} - a_{ii} + a'_{ii} + 2w'_ i}{2w'_ i} = \frac{w_ i}{w'_ i}(g_ i - 1) + 1 + \frac{a_{in}^2 - w_ na_{in}}{2w'_ iw_ n}
It is elementary to check that this is an integer \geq 0 if we choose w'_ i as in (4).
\square
Comments (0)