Lemma 55.5.1. Classification of proper subgraphs of the form
If n > 2, then given a pair i, j of (-2)-indices with a_{ij} > 0, then up to ordering we have the m's, a's, w's
are given by
\left( \begin{matrix} m_1 \\ m_2 \end{matrix} \right), \quad \left( \begin{matrix} -2w & w \\ w & -2w \end{matrix} \right), \quad \left( \begin{matrix} w \\ w \end{matrix} \right)with w arbitrary and 2m_1 \geq m_2 and 2m_2 \geq m_1, or
are given by
\left( \begin{matrix} m_1 \\ m_2 \end{matrix} \right), \quad \left( \begin{matrix} -2w & 2w \\ 2w & -4w \end{matrix} \right), \quad \left( \begin{matrix} w \\ 2w \end{matrix} \right)with w arbitrary and m_1 \geq m_2 and 2m_2 \geq m_1, or
are given by
\left( \begin{matrix} m_1 \\ m_2 \end{matrix} \right), \quad \left( \begin{matrix} -2w & 3w \\ 3w & -6w \end{matrix} \right), \quad \left( \begin{matrix} w \\ 3w \end{matrix} \right)with w arbitrary and 2m_1 \geq 3m_2 and 2m_2 \geq m_1.
Comments (0)