Lemma 55.5.10. Classification of proper subgraphs of the form

$\xymatrix{ \bullet \ar@{-}[r] & \bullet \ar@{-}[r] & \bullet \ar@{-}[r] \ar@{-}[d] & \bullet \ar@{-}[r] & \bullet \\ & & \bullet }$

Let $n > 6$. Then given $6$ distinct $(-2)$-indices $i_1, \ldots , i_6$ such that $a_{12}, a_{23}, a_{34}, a_{45}, a_{36}$ are nonzero, then we have the $m$'s, $a$'s, and $w$'s

1. are given by

$\left( \begin{matrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ m_5 \\ m_6 \end{matrix} \right), \quad \left( \begin{matrix} -2w & w & 0 & 0 & 0 & 0 \\ w & -2w & w & 0 & 0 & 0 \\ 0 & w & -2w & w & 0 & w \\ 0 & 0 & w & -2w & w & 0 \\ 0 & 0 & 0 & w & -2w & 0 \\ 0 & 0 & w & 0 & 0 & -2w \end{matrix} \right), \quad \left( \begin{matrix} w \\ w \\ w \\ w \\ w \\ w \end{matrix} \right)$

with $2m_1 \geq m_2$, $2m_2 \geq m_1 + m_3$, $2m_3 \geq m_2 + m_4 + m_6$, $2m_4 \geq m_3 + m_5$, $2m_5 \geq m_3$, and $2m_6 \geq m_3$.

Proof. See discussion above. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).