Lemma 55.6.2 (Genus one). The minimal numerical types of genus one are up to equivalence
n = 1, a_{11} = 0, g_1 = 1, m_1, w_1 \geq 1 arbitrary,
n = 2, and m_ i, a_{ij}, w_ i, g_ i given by
\left( \begin{matrix} m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & 2w \\ 2w & -2w \end{matrix} \right), \quad \left( \begin{matrix} w \\ w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \end{matrix} \right)with w and m arbitrary,
n = 2, and m_ i, a_{ij}, w_ i, g_ i given by
\left( \begin{matrix} 2m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & 4w \\ 4w & -8w \end{matrix} \right), \quad \left( \begin{matrix} w \\ 4w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \end{matrix} \right)with w and m arbitrary,
n = 3, and m_ i, a_{ij}, w_ i, g_ i given by
\left( \begin{matrix} m \\ m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & w & w \\ w & -2w & w \\ w & w & -2w \end{matrix} \right), \quad \left( \begin{matrix} w \\ w \\ w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \end{matrix} \right)with w and m arbitrary,
n = 3, and m_ i, a_{ij}, w_ i, g_ i given by
\left( \begin{matrix} m \\ 2m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & w & 0 \\ w & -2w & 3w \\ 0 & 3w & -6w \end{matrix} \right), \quad \left( \begin{matrix} w \\ w \\ 3w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \end{matrix} \right)with w and m arbitrary,
n = 3, and m_ i, a_{ij}, w_ i, g_ i given by
\left( \begin{matrix} m \\ 2m \\ 3m \end{matrix} \right), \quad \left( \begin{matrix} -6w & 3w & 0 \\ 3w & -6w & 3w \\ 0 & 3w & -2w \end{matrix} \right), \quad \left( \begin{matrix} 3w \\ 3w \\ w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \end{matrix} \right)with w and m arbitrary,
n = 3, and m_ i, a_{ij}, w_ i, g_ i given by
\left( \begin{matrix} 2m \\ 2m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & 2w & 0 \\ 2w & -4w & 4w \\ 0 & 4w & -8w \end{matrix} \right), \quad \left( \begin{matrix} w \\ 2w \\ 4w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \end{matrix} \right)with w and m arbitrary,
n = 3, and m_ i, a_{ij}, w_ i, g_ i given by
\left( \begin{matrix} m \\ m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & 2w & 0 \\ 2w & -4w & 2w \\ 0 & 2w & -2w \end{matrix} \right), \quad \left( \begin{matrix} w \\ 2w \\ w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \end{matrix} \right)with w and m arbitrary,
n = 3, and m_ i, a_{ij}, w_ i, g_ i given by
\left( \begin{matrix} m \\ 2m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -4w & 2w & 0 \\ 2w & -2w & 2w \\ 0 & 2w & -4w \end{matrix} \right), \quad \left( \begin{matrix} 2w \\ w \\ 2w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \end{matrix} \right)with w and m arbitrary,
n = 4, and m_ i, a_{ij}, w_ i, g_ i given by
\left( \begin{matrix} m \\ m \\ m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & w & 0 & w \\ w & -2w & w & 0 \\ 0 & w & -2w & w \\ w & 0 & w & -2w \end{matrix} \right), \quad \left( \begin{matrix} w \\ w \\ w \\ w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right)with w and m arbitrary,
n = 4, and m_ i, a_{ij}, w_ i, g_ i given by
\left( \begin{matrix} 2m \\ 2m \\ 2m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & 2w & 0 & 0 \\ 2w & -4w & 2w & 0 \\ 0 & 2w & -4w & 4w \\ 0 & 0 & 4w & -8w \end{matrix} \right), \quad \left( \begin{matrix} w \\ 2w \\ 2w \\ 4w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right)with w and m arbitrary,
n = 4, and m_ i, a_{ij}, w_ i, g_ i given by
\left( \begin{matrix} m \\ m \\ m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & 2w & 0 & 0 \\ 2w & -4w & 2w & 0 \\ 0 & 2w & -4w & 2w \\ 0 & 0 & 2w & -2w \end{matrix} \right), \quad \left( \begin{matrix} w \\ 2w \\ 2w \\ w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right)with w and m arbitrary,
n = 4, and m_ i, a_{ij}, w_ i, g_ i given by
\left( \begin{matrix} m \\ 2m \\ 2m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -4w & 2w & 0 & 0 \\ 2w & -2w & w & 0 \\ 0 & w & -2w & 2w \\ 0 & 0 & 2w & -4w \end{matrix} \right), \quad \left( \begin{matrix} 2w \\ w \\ w \\ 2w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right)with w and m arbitrary,
n = 4, and m_ i, a_{ij}, w_ i, g_ i given by
\left( \begin{matrix} 2m \\ m \\ m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & w & w & 2w \\ w & -2w & 0 & 0 \\ w & 0 & -2w & 0 \\ 2w & 0 & 0 & -4w \end{matrix} \right), \quad \left( \begin{matrix} w \\ w \\ w \\ 2w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right)with w and m arbitrary,
n = 4, and m_ i, a_{ij}, w_ i, g_ i given by
\left( \begin{matrix} 2m \\ m \\ m \\ 2m \end{matrix} \right), \quad \left( \begin{matrix} -4w & 2w & 2w & 2w \\ 2w & -4w & 0 & 0 \\ 2w & 0 & -4w & 0 \\ 2w & 0 & 0 & -2w \end{matrix} \right), \quad \left( \begin{matrix} 2w \\ 2w \\ 2w \\ w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right)with w and m arbitrary,
n = 5, and m_ i, a_{ij}, w_ i, g_ i given by
\left( \begin{matrix} m \\ m \\ m \\ m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & w & 0 & 0 & w \\ w & -2w & w & 0 & 0 \\ 0 & w & -2w & w & 0 \\ 0 & 0 & w & -2w & w \\ w & 0 & 0 & w & -2w \\ \end{matrix} \right), \quad \left( \begin{matrix} w \\ w \\ w \\ w \\ w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right)with w and m arbitrary,
n = 5, and m_ i, a_{ij}, w_ i, g_ i given by
\left( \begin{matrix} m \\ 2m \\ 3m \\ 2m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & w & 0 & 0 & 0 \\ w & -2w & w & 0 & 0 \\ 0 & w & -2w & 2w & 0 \\ 0 & 0 & 2w & -4w & 2w \\ 0 & 0 & 0 & 2w & -4w \\ \end{matrix} \right), \quad \left( \begin{matrix} w \\ w \\ w \\ 2w \\ 2w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right)with w and m arbitrary,
n = 5, and m_ i, a_{ij}, w_ i, g_ i given by
\left( \begin{matrix} m \\ 2m \\ 3m \\ 4m \\ 2m \end{matrix} \right), \quad \left( \begin{matrix} -4w & 2w & 0 & 0 & 0 \\ 2w & -4w & 2w & 0 & 0 \\ 0 & 2w & -4w & 2w & 0 \\ 0 & 0 & 2w & -2w & w \\ 0 & 0 & 0 & w & -2w \\ \end{matrix} \right), \quad \left( \begin{matrix} 2w \\ 2w \\ 2w \\ w \\ w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right)with w and m arbitrary,
n = 5, and m_ i, a_{ij}, w_ i, g_ i given by
\left( \begin{matrix} 2m \\ 2m \\ 2m \\ 2m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & 2w & 0 & 0 & 0 \\ 2w & -4w & 2w & 0 & 0 \\ 0 & 2w & -4w & 2w & 0 \\ 0 & 0 & 2w & -4w & 4w \\ 0 & 0 & 0 & 4w & -8w \\ \end{matrix} \right), \quad \left( \begin{matrix} w \\ 2w \\ 2w \\ 2w \\ 4w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right)with w and m arbitrary,
n = 5, and m_ i, a_{ij}, w_ i, g_ i given by
\left( \begin{matrix} m \\ m \\ m \\ m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & 2w & 0 & 0 & 0 \\ 2w & -4w & 2w & 0 & 0 \\ 0 & 2w & -4w & 2w & 0 \\ 0 & 0 & 2w & -4w & 2w \\ 0 & 0 & 0 & 2w & -2w \\ \end{matrix} \right), \quad \left( \begin{matrix} w \\ 2w \\ 2w \\ 2w \\ w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right)with w and m arbitrary,
n = 5, and m_ i, a_{ij}, w_ i, g_ i given by
\left( \begin{matrix} m \\ 2m \\ 2m \\ 2m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -4w & 2w & 0 & 0 & 0 \\ 2w & -2w & w & 0 & 0 \\ 0 & w & -2w & w & 0 \\ 0 & 0 & w & -2w & 2w \\ 0 & 0 & 0 & 2w & -4w \\ \end{matrix} \right), \quad \left( \begin{matrix} 2w \\ w \\ w \\ w \\ 2w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right)with w and m arbitrary,
n = 5, and m_ i, a_{ij}, w_ i, g_ i given by
\left( \begin{matrix} 2m \\ m \\ m \\ m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & w & w & w & w \\ w & -2w & 0 & 0 & 0 \\ w & 0 & -2w & 0 & 0 \\ w & 0 & 0 & -2w & 0 \\ w & 0 & 0 & 0 & -2w \\ \end{matrix} \right), \quad \left( \begin{matrix} w \\ w \\ w \\ w \\ w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right)with w and m arbitrary,
n = 5, and m_ i, a_{ij}, w_ i, g_ i given by
\left( \begin{matrix} m \\ 2m \\ 2m \\ m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -4w & 2w & 0 & 0 & 0 \\ 2w & -2w & w & 0 & 0 \\ 0 & w & -2w & w & w \\ 0 & 0 & w & -2w & 0 \\ 0 & 0 & w & 0 & -2w \\ \end{matrix} \right), \quad \left( \begin{matrix} 2w \\ w \\ w \\ w \\ w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right)with w and m arbitrary,
n = 5, and m_ i, a_{ij}, w_ i, g_ i given by
\left( \begin{matrix} 2m \\ 2m \\ 2m \\ m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & 2w & 0 & 0 & 0 \\ 2w & -4w & 2w & 0 & 0 \\ 0 & 2w & -4w & 2w & 2w \\ 0 & 0 & 2w & -4w & 0 \\ 0 & 0 & 2w & 0 & -4w \\ \end{matrix} \right), \quad \left( \begin{matrix} w \\ 2w \\ 2w \\ 2w \\ 2w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right)with w and m arbitrary,
n \geq 6 and we have an n-cycle generalizing (16):
m_1 = \ldots = m_ n = m,
a_{12} = \ldots = a_{(n - 1) n} = w, a_{1n} = w, and for other i < j we have a_{ij} = 0,
w_1 = \ldots = w_ n = w
with w and m arbitrary,
n \geq 6 and we have a chain generalizing (19):
m_1 = \ldots = m_{n - 1} = 2m, m_ n = m,
a_{12} = \ldots = a_{(n - 2) (n - 1)} = 2w, a_{(n - 1) n} = 4w, and for other i < j we have a_{ij} = 0,
w_1 = w, w_2 = \ldots = w_{n - 1} = 2w, w_ n = 4w
with w and m arbitrary,
n \geq 6 and we have a chain generalizing (20):
m_1 = \ldots = m_ n = m,
a_{12} = \ldots = a_{(n - 1) n} = w, and for other i < j we have a_{ij} = 0,
w_1 = w, w_2 = \ldots = w_{n - 1} = 2w, w_ n = w
with w and m arbitrary,
n \geq 6 and we have a chain generalizing (21):
m_1 = w, w_2 = \ldots = m_{n - 1} = 2m, m_ n = m,
a_{12} = 2w, a_{23} = \ldots = a_{(n - 2) (n - 1)} = w, a_{(n - 1) n} = 2w, and for other i < j we have a_{ij} = 0,
w_1 = 2w, w_2 = \ldots = w_{n - 1} = w, w_ n = 2w
with w and m arbitrary,
n \geq 6 and we have a type generalizing (23):
m_1 = m, m_2 = \ldots = m_{n - 3} = 2m, m_{n - 1} = m_ n = m,
a_{12} = 2w, a_{23} = \ldots = a_{(n - 2) (n - 1)} = w, a_{(n - 2) n} = w, and for other i < j we have a_{ij} = 0,
w_1 = 2w, w_2 = \ldots = w_ n = w
with w and m arbitrary,
n \geq 6 and we have a type generalizing (24):
m_1 = \ldots = m_{n - 3} = 2m, m_{n - 1} = m_ n = m,
a_{12} = \ldots = a_{(n - 2) (n - 1)} = 2w, a_{(n - 2) n} = 2w, and for other i < j we have a_{ij} = 0,
w_1 = w, w_2 = \ldots = w_ n = 2w
with w and m arbitrary,
n \geq 6 and we have a type generalizing (22):
m_1 = m_2 = m, m_3 = \ldots = m_{n - 2} = 2m, m_{n - 1} = m_ n = m,
a_{13} = w, a_{23} = \ldots = a_{(n - 2) (n - 1)} = w, a_{(n - 2) n} = w, and for other i < j we have a_{ij} = 0,
w_1 = \ldots = w_ n = w,
with w and m arbitrary,
n = 7, and m_ i, a_{ij}, w_ i, g_ i given by
\left( \begin{matrix} m \\ 2m \\ 3m \\ m \\ 2m \\ m \\ 2m \end{matrix} \right), \quad \left( \begin{matrix} -2w & w & 0 & 0 & 0 & 0 & 0 \\ w & -2w & w & 0 & 0 & 0 & 0 \\ 0 & w & -2w & 0 & w & 0 & w \\ 0 & 0 & 0 & -2w & w & 0 & 0 \\ 0 & 0 & w & w & -2w & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -2w & w \\ 0 & 0 & w & 0 & 0 & w & -2w \end{matrix} \right), \quad \left( \begin{matrix} w \\ w \\ w \\ w \\ w \\ w \\ w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right)with w and m arbitrary,
n = 8, and m_ i, a_{ij}, w_ i, g_ i given by
\left( \begin{matrix} m \\ 2m \\ 3m \\ 4m \\ 3m \\ 2m \\ m \\ 2m \end{matrix} \right), \quad \left( \begin{matrix} -2w & w & 0 & 0 & 0 & 0 & 0 & 0 \\ w & -2w & w & 0 & 0 & 0 & 0 & 0 \\ 0 & w & -2w & w & 0 & 0 & 0 & 0 \\ 0 & 0 & w & -2w & w & 0 & 0 & w \\ 0 & 0 & 0 & w & -2w & w & 0 & 0 \\ 0 & 0 & 0 & 0 & w & -2w & w & 0 \\ 0 & 0 & 0 & 0 & 0 & w & -2w & 0 \\ 0 & 0 & 0 & w & 0 & 0 & 0 & -2w \\ \end{matrix} \right), \quad \left( \begin{matrix} w \\ w \\ w \\ w \\ w \\ w \\ w \\ w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right)with w and m arbitrary,
n = 9, and m_ i, a_{ij}, w_ i, g_ i given by
\left( \begin{matrix} m \\ 2m \\ 3m \\ 4m \\ 5m \\ 6m \\ 4m \\ 2m \\ 3m \end{matrix} \right), \quad \left( \begin{matrix} -2w & w & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ w & -2w & w & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & w & -2w & w & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & w & -2w & w & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & w & -2w & w & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & w & -2w & w & 0 & w \\ 0 & 0 & 0 & 0 & 0 & w & -2w & w & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & w & -2w & 0 \\ 0 & 0 & 0 & 0 & 0 & w & 0 & 0 & -2w \\ \end{matrix} \right), \quad \left( \begin{matrix} w \\ w \\ w \\ w \\ w \\ w \\ w \\ w \\ w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right)with w and m arbitrary.
Comments (0)