The Stacks project

Example 55.10.3. If the genus of $C$ is $0$, then minimal models are indeed nonunique. Namely, consider the closed subscheme

\[ X \subset \mathbf{P}^2_ R \]

defined by $T_1T_2 - \pi T_0^2 = 0$. More precisely $X$ is defined as $\text{Proj}(R[T_0, T_1, T_2]/(T_1T_2 - \pi T_0^2))$. Then the special fibre $X_ k$ is a union of two exceptional curves $C_1$, $C_2$ both isomorphic to $\mathbf{P}^1_ k$ (exactly as in Lemma 55.9.11). Projection from $(0 : 1 : 0)$ defines a morphism $X \to \mathbf{P}^1_ R$ contracting $C_2$ and inducing an isomorphism of $C_1$ with the special fiber of $\mathbf{P}^1_ R$. Projection from $(0 : 0 : 1)$ defines a morphism $X \to \mathbf{P}^1_ R$ contracting $C_1$ and inducing an isomorphism of $C_2$ with the special fiber of $\mathbf{P}^1_ R$. More precisely, these morphisms correspond to the graded $R$-algebra maps

\[ R[T_0, T_1] \longrightarrow R[T_0, T_1, T_2]/(T_1T_2 - \pi T_0^2) \longleftarrow R[T_0, T_2] \]

In Lemma 55.12.4 we will study this phenomenon.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CA0. Beware of the difference between the letter 'O' and the digit '0'.