The Stacks project

Definition 33.36.4. Let $p > 0$ be a prime number. Let $S$ be a scheme in characteristic $p$. Let $X$ be a scheme over $S$. We define

\[ X^{(p)} = X^{(p/S)} = X \times _{S, F_ S} S \]

viewed as a scheme over $S$. Applying Lemma 33.36.2 we see there is a unique morphism $F_{X/S} : X \longrightarrow X^{(p)}$ over $S$ fitting into the commutative diagram

\[ \xymatrix{ X \ar[rr]_{F_{X/S}} \ar[rrd] \ar@/^1em/[rrrr]^{F_ X} & & X^{(p)} \ar[rr] \ar[d] & & X \ar[d] \\ & & S \ar[rr]^{F_ S} & & S } \]

where the right square is cartesian. The morphism $F_{X/S}$ is called the relative Frobenius morphism of $X/S$.

Comments (0)

There are also:

  • 6 comment(s) on Section 33.36: Frobenii

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CC9. Beware of the difference between the letter 'O' and the digit '0'.