Lemma 35.6.1. Let k'/k be a (finite) Galois extension with Galois group G. Let X be a scheme over k. The category of quasi-coherent \mathcal{O}_ X-modules is equivalent to the category of systems (\mathcal{F}, (\varphi _\sigma )_{\sigma \in G}) where
\mathcal{F} is a quasi-coherent module on X_{k'},
\varphi _\sigma : \mathcal{F} \to f_\sigma ^*\mathcal{F} is an isomorphism of modules,
\varphi _{\sigma \tau } = f_\sigma ^*\varphi _\tau \circ \varphi _\sigma for all \sigma , \tau \in G.
Here f_\sigma = \text{id}_ X \times \mathop{\mathrm{Spec}}(\sigma ) : X_{k'} \to X_{k'}.
Comments (0)