The Stacks project

Lemma 53.17.2. Let $k$ be a field. Let $n$ be prime to the characteristic of $k$. Let $X$ be a smooth proper curve over $k$ with $H^0(X, \mathcal{O}_ X) = k$ and of genus $g$.

  1. If $g = 1$ then there exists a finite separable extension $k'/k$ such that $X_{k'}$ has a $k'$-rational point and $\mathop{\mathrm{Pic}}\nolimits (X_{k'})[n] \cong (\mathbf{Z}/n\mathbf{Z})^{\oplus 2}$.

  2. If $g \geq 2$ then there exists a finite separable extension $k'/k$ with $[k' : k] \leq (2g - 2)(n^{2g})!$ such that $X_{k'}$ has a $k'$-rational point and $\mathop{\mathrm{Pic}}\nolimits (X_{k'})[n] \cong (\mathbf{Z}/n\mathbf{Z})^{\oplus 2g}$.

Proof. Assume $g \geq 2$. First we may choose a finite separable extension of degree at most $2g - 2$ such that $X$ acquires a rational point, see Lemma 53.13.9. Thus we may assume $X$ has a $k$-rational point $x \in X(k)$ but now we have to prove the lemma with $[k' : k] \leq (n^{2g})!$. Let $k \subset k^{sep} \subset \overline{k}$ be a separable algebraic closure inside an algebraic closure. By Lemma 53.17.1 we have

\[ \mathop{\mathrm{Pic}}\nolimits (X_{\overline{k}})[n] \cong (\mathbf{Z}/n\mathbf{Z})^{\oplus 2g} \]

By Picard Schemes of Curves, Lemma 44.7.2 we conclude that

\[ \mathop{\mathrm{Pic}}\nolimits (X_{k^{sep}})[n] \cong (\mathbf{Z}/n\mathbf{Z})^{\oplus 2g} \]

By Picard Schemes of Curves, Lemma 44.7.2 there is a continuous action

\[ \text{Gal}(k^{sep}/k) \longrightarrow \text{Aut}(\mathop{\mathrm{Pic}}\nolimits (X_{k^{sep}})[n] \]

and the lemma is true for the fixed field $k'$ of the kernel of this map. The kernel is open because the action is continuous which implies that $k'/k$ is finite. By Galois theory $\text{Gal}(k'/k)$ is the image of the displayed arrow. Since the permutation group of a set of cardinality $n^{2g}$ has cardinality $(n^{2g})!$ we conclude by Galois theory that $[k' : k] \leq (n^{2g})!$. (Of course this proves the lemma with the bound $|\text{GL}_{2g}(\mathbf{Z}/n\mathbf{Z})|$, but all we want here is that there is some bound.)

If the genus is $1$, then there is no upper bound on the degree of a finite separable field extension over which $X$ acquires a rational point (details omitted). Still, there is such an extension for example by Varieties, Lemma 33.25.6. The rest of the proof is the same as in the case of $g \geq 2$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CDU. Beware of the difference between the letter 'O' and the digit '0'.