Lemma 101.6.1. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks.
The following are equivalent
$\mathcal{I}_{\mathcal{X}/\mathcal{Y}} \to \mathcal{X}$ is separated,
$\Delta _{f, 1} = \Delta _ f : \mathcal{X} \to \mathcal{X} \times _\mathcal {Y} \mathcal{X}$ is separated, and
$\Delta _{f, 2} = e : \mathcal{X} \to \mathcal{I}_{\mathcal{X}/\mathcal{Y}}$ is a closed immersion.
The following are equivalent
$\mathcal{I}_{\mathcal{X}/\mathcal{Y}} \to \mathcal{X}$ is quasi-separated,
$\Delta _{f, 1} = \Delta _ f : \mathcal{X} \to \mathcal{X} \times _\mathcal {Y} \mathcal{X}$ is quasi-separated, and
$\Delta _{f, 2} = e : \mathcal{X} \to \mathcal{I}_{\mathcal{X}/\mathcal{Y}}$ is a quasi-compact.
The following are equivalent
$\mathcal{I}_{\mathcal{X}/\mathcal{Y}} \to \mathcal{X}$ is locally separated,
$\Delta _{f, 1} = \Delta _ f : \mathcal{X} \to \mathcal{X} \times _\mathcal {Y} \mathcal{X}$ is locally separated, and
$\Delta _{f, 2} = e : \mathcal{X} \to \mathcal{I}_{\mathcal{X}/\mathcal{Y}}$ is an immersion.
The following are equivalent
$\mathcal{I}_{\mathcal{X}/\mathcal{Y}} \to \mathcal{X}$ is unramified,
$f$ is DM.
The following are equivalent
$\mathcal{I}_{\mathcal{X}/\mathcal{Y}} \to \mathcal{X}$ is locally quasi-finite,
$f$ is quasi-DM.
Comments (0)
There are also: