Lemma 101.39.2. In the situation of Definition 101.39.1 the category of dotted arrows is a groupoid. If $\Delta _ f$ is separated, then it is a setoid.
Proof. Since $2$-arrows are invertible it is clear that the category of dotted arrows is a groupoid. Given a dotted arrow $(a, \alpha , \beta )$ an automorphism of $(a, \alpha , \beta )$ is a $2$-morphism $\theta : a \to a$ satisfying two conditions. The first condition $\beta = (\text{id}_ f \star \theta ) \circ \beta $ signifies that $\theta $ defines a morphism $(a, \theta ) : \mathop{\mathrm{Spec}}(A) \to \mathcal{I}_{\mathcal{X}/\mathcal{Y}}$. The second condition $\alpha = \alpha \circ (\theta \star \text{id}_ j)$ implies that the restriction of $(a, \theta )$ to $\mathop{\mathrm{Spec}}(K)$ is the identity. Picture
In other words, if $G \to \mathop{\mathrm{Spec}}(A)$ is the group algebraic space we get by pulling back the relative inertia by $a$, then $\theta $ defines a point $\theta \in G(A)$ whose image in $G(K)$ is trivial. Certainly, if the identity $e : \mathop{\mathrm{Spec}}(A) \to G$ is a closed immersion, then this can happen only if $\theta $ is the identity. Looking at Lemma 101.6.1 we obtain the result we want. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: