The Stacks project

Lemma 32.16.1. Let $f : X \to S$ and $h : U \to X$ be morphisms of schemes. Assume that $S$ is locally Noetherian, that $f$ and $h$ are of finite type, that $f$ is separated, and that $h(U)$ is dense in $X$. If given any commutative solid diagram

\[ \xymatrix{ \mathop{\mathrm{Spec}}(K) \ar[r] \ar[d] & U \ar[r]^ h & X \ar[d]^ f \\ \mathop{\mathrm{Spec}}(A) \ar[rr] \ar@{-->}[rru] & & S } \]

where $A$ is a discrete valuation ring with field of fractions $K$, there exists a dotted arrow making the diagram commute, then $f$ is proper.

Proof. There is an immediate reduction to the case where $S$ is affine. Then $U$ is quasi-compact. Let $U = U_1 \cup \ldots \cup U_ n$ be an affine open covering. We may replace $U$ by $U_1 \amalg \ldots \amalg U_ n$ without changing the assumptions, hence we may assume $U$ is affine. Thus we can find an open immersion $U \to Y$ over $X$ with $Y$ proper over $X$. (First put $U$ inside $\mathbf{A}^ n_ X$ using Morphisms, Lemma 29.39.2 and then take the closure inside $\mathbf{P}^ n_ X$, or you can directly use Morphisms, Lemma 29.43.12.) We can assume $U$ is dense in $Y$ (replace $Y$ by the scheme theoretic closure of $U$ if necessary, see Morphisms, Section 29.7). Note that $g : Y \to X$ is surjective as the image is closed and contains the dense subset $h(U)$. We will show that $Y \to S$ is proper. This will imply that $X \to S$ is proper by Morphisms, Lemma 29.41.9 thereby finishing the proof. To show that $Y \to S$ is proper we will use part (4) of Lemma 32.15.3. To do this consider a diagram

\[ \xymatrix{ \mathop{\mathrm{Spec}}(K) \ar[r]_ y \ar[d] & Y \ar[d]^{f \circ g} \\ \mathop{\mathrm{Spec}}(A) \ar[r] \ar@{..>}[ru] & S } \]

where $A$ is a discrete valuation ring with fraction field $K$ and where $y : \mathop{\mathrm{Spec}}(K) \to Y$ is the inclusion of a generic point. We have to show there exists a unique dotted arrow. Uniqueness holds by the converse to the valuative criterion for separatedness (Schemes, Lemma 26.22.1) since $Y \to S$ is separated as the composition of the separated morphisms $Y \to X$ and $X \to S$ (Schemes, Lemma 26.21.12). Existence can be seen as follows. As $y$ is a generic point of $Y$, it is contained in $U$. By assumption of the lemma there exists a morphism $a : \mathop{\mathrm{Spec}}(A) \to X$ such that

\[ \xymatrix{ \mathop{\mathrm{Spec}}(K) \ar[r]_ y \ar[d] & U \ar[r] & X \ar[d]^ f \\ \mathop{\mathrm{Spec}}(A) \ar[rr] \ar[rru]^ a & & S } \]

is commutative. Then since $Y \to X$ is proper, we can apply the valuative criterion for properness (Morphisms, Lemma 29.42.1) to find a morphism $b : \mathop{\mathrm{Spec}}(A) \to Y$ such that

\[ \xymatrix{ \mathop{\mathrm{Spec}}(K) \ar[r]_ y \ar[d] & Y \ar[d]^ g \\ \mathop{\mathrm{Spec}}(A) \ar[r]^ a \ar[ru]^ b & X } \]

is commutative. This finishes the proof since $b$ can serve as the dotted arrow above. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CM3. Beware of the difference between the letter 'O' and the digit '0'.