Lemma 102.3.3. Let $p : \mathcal{X} \to \mathcal{Y}$ and $q : \mathcal{Z} \to \mathcal{Y}$ be $1$-morphisms of categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. If $p : \mathcal{X} \to \mathcal{Y}$ is limit preserving, then so is the base change $p' : \mathcal{X} \times _\mathcal {Y} \mathcal{Z} \to \mathcal{Z}$ of $p$ by $q$.
Proof. This is formal. Let $U = \mathop{\mathrm{lim}}\nolimits _{i \in I} U_ i$ be the directed limit of affine schemes $U_ i$ over $S$. For each $i$ we have
\[ (\mathcal{X} \times _\mathcal {Y} \mathcal{Z})_{U_ i} = \mathcal{X}_{U_ i} \times _{\mathcal{Y}_{U_ i}} \mathcal{Z}_{U_ i} \]
Filtered colimits commute with $2$-fibre products of categories (details omitted) hence if $p$ is limit preserving we get
\begin{align*} \mathop{\mathrm{colim}}\nolimits (\mathcal{X} \times _\mathcal {Y} \mathcal{Z})_{U_ i} & = \mathop{\mathrm{colim}}\nolimits \mathcal{X}_{U_ i} \times _{\mathop{\mathrm{colim}}\nolimits \mathcal{Y}_{U_ i}} \mathop{\mathrm{colim}}\nolimits \mathcal{Z}_{U_ i} \\ & = \mathcal{X}_ U \times _{\mathcal{Y}_ U} \mathop{\mathrm{colim}}\nolimits \mathcal{Y}_{U_ i} \times _{\mathop{\mathrm{colim}}\nolimits \mathcal{Y}_{U_ i}} \mathop{\mathrm{colim}}\nolimits \mathcal{Z}_{U_ i} \\ & = \mathcal{X}_ U \times _{\mathcal{Y}_ U} \mathop{\mathrm{colim}}\nolimits \mathcal{Z}_{U_ i} \\ & = \mathcal{X}_ U \times _{\mathcal{Y}_ U} \mathcal{Z}_ U \times _{\mathcal{Z}_ U} \mathop{\mathrm{colim}}\nolimits \mathcal{Z}_{U_ i} \\ & = (\mathcal{X} \times _\mathcal {Y} \mathcal{Z})_ U \times _{\mathcal{Z}_ U} \mathop{\mathrm{colim}}\nolimits \mathcal{Z}_{U_ i} \end{align*}
as desired. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)