Lemma 102.3.4. Let $p : \mathcal{X} \to \mathcal{Y}$ and $q : \mathcal{Y} \to \mathcal{Z}$ be $1$-morphisms of categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. If $p$ and $q$ are limit preserving, then so is the composition $q \circ p$.
Proof. This is formal. Let $U = \mathop{\mathrm{lim}}\nolimits _{i \in I} U_ i$ be the directed limit of affine schemes $U_ i$ over $S$. If $p$ and $q$ are limit preserving we get
\begin{align*} \mathop{\mathrm{colim}}\nolimits \mathcal{X}_{U_ i} & = \mathcal{X}_ U \times _{\mathcal{Y}_ U} \mathop{\mathrm{colim}}\nolimits \mathcal{Y}_{U_ i} \\ & = \mathcal{X}_ U \times _{\mathcal{Y}_ U} \mathcal{Y}_ U \times _{\mathcal{Z}_ U} \mathop{\mathrm{colim}}\nolimits \mathcal{Z}_{U_ i} \\ & = \mathcal{X}_ U \times _{\mathcal{Z}_ U} \mathop{\mathrm{colim}}\nolimits \mathcal{Z}_{U_ i} \end{align*}
as desired. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)