Lemma 29.46.3. Let $A \subset B$ be a ring extension. Let $S \subset A$ be a multiplicative subset. Let $n \geq 1$ and $b_ i \in B$ for $1 \leq i \leq n$. Any $x \in S^{-1}B$ such that
\[ x \not\in S^{-1}A\text{ and } b_ i x^ i \in S^{-1}A\text{ for }i = 1, \ldots , n \]
is equal to $s^{-1}y$ with $s \in S$ and $y \in B$ such that
\[ y \not\in A\text{ and } b_ i y^ i \in A\text{ for }i = 1, \ldots , n \]
Comments (0)
There are also: