Lemma 29.46.3. Let $A \subset B$ be a ring extension. Let $S \subset A$ be a multiplicative subset. Let $n \geq 1$ and $b_ i \in B$ for $1 \leq i \leq n$. Any $x \in S^{-1}B$ such that

is equal to $s^{-1}y$ with $s \in S$ and $y \in B$ such that

Lemma 29.46.3. Let $A \subset B$ be a ring extension. Let $S \subset A$ be a multiplicative subset. Let $n \geq 1$ and $b_ i \in B$ for $1 \leq i \leq n$. Any $x \in S^{-1}B$ such that

\[ x \not\in S^{-1}A\text{ and } b_ i x^ i \in S^{-1}A\text{ for }i = 1, \ldots , n \]

is equal to $s^{-1}y$ with $s \in S$ and $y \in B$ such that

\[ y \not\in A\text{ and } b_ i y^ i \in A\text{ for }i = 1, \ldots , n \]

**Proof.**
Omitted. Hint: clear denominators.
$\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: