Proposition 29.46.8. Let $A \subset B$ be a ring extension. The following are equivalent
$\mathop{\mathrm{Spec}}(B) \to \mathop{\mathrm{Spec}}(A)$ is a universal homeomorphism, and
every finite subset $E \subset B$ is contained in an extension
\[ A[b_1, \ldots , b_ n] \subset B \]such that for $i = 1, \ldots , n$ we have
$b_ i^2, b_ i^3 \in A[b_1, \ldots , b_{i - 1}]$, or
there exists a prime number $p$ with $pb_ i, b_ i^ p \in A[b_1, \ldots , b_{i - 1}]$.
Comments (0)
There are also: