Lemma 100.28.10. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks which makes $\mathcal{X}$ a gerbe over $\mathcal{Y}$. Then

1. $\mathcal{I}_{\mathcal{X}/\mathcal{Y}} \to \mathcal{X}$ is flat and locally of finite presentation,

2. $\mathcal{X} \to \mathcal{X} \times _\mathcal {Y} \mathcal{X}$ is surjective, flat, and locally of finite presentation,

3. given algebraic spaces $T_ i$, $i = 1, 2$ and morphisms $x_ i : T_ i \to \mathcal{X}$, with $y_ i = f \circ x_ i$ the morphism

$T_1 \times _{x_1, \mathcal{X}, x_2} T_2 \longrightarrow T_1 \times _{y_1, \mathcal{Y}, y_2} T_2$

is surjective, flat, and locally of finite presentation,

4. given an algebraic space $T$ and morphisms $x_ i : T \to \mathcal{X}$, $i = 1, 2$, with $y_ i = f \circ x_ i$ the morphism

$\mathit{Isom}_\mathcal {X}(x_1, x_2) \longrightarrow \mathit{Isom}_\mathcal {Y}(y_1, y_2)$

is surjective, flat, and locally of finite presentation.

Proof. Proof of (1). Choose a scheme $Y$ and a surjective smooth morphism $Y \to \mathcal{Y}$. Set $\mathcal{X}' = \mathcal{X} \times _\mathcal {Y} Y$. By Lemma 100.5.5 we obtain cartesian squares

$\xymatrix{ \mathcal{I}_{\mathcal{X}'} \ar[r] \ar[d] & \mathcal{X}' \ar[r] \ar[d] & Y \ar[d] \\ \mathcal{I}_{\mathcal{X}/\mathcal{Y}} \ar[r] & \mathcal{X} \ar[r] & \mathcal{Y} }$

By Lemmas 100.25.4 and 100.27.11 it suffices to prove that $\mathcal{I}_{\mathcal{X}'} \to \mathcal{X}'$ is flat and locally of finite presentation. This follows from Proposition 100.28.9 (because $\mathcal{X}'$ is a gerbe over $Y$ by Lemma 100.28.3).

Proof of (2). With notation as above, note that we may assume that $\mathcal{X}' = [Y/G]$ for some group algebraic space $G$ flat and locally of finite presentation over $Y$, see Lemma 100.28.7. The base change of the morphism $\Delta : \mathcal{X} \to \mathcal{X} \times _\mathcal {Y} \mathcal{X}$ over $\mathcal{Y}$ by the morphism $Y \to \mathcal{Y}$ is the morphism $\Delta ' : \mathcal{X}' \to \mathcal{X}' \times _ Y \mathcal{X}'$. Hence it suffices to show that $\Delta '$ is surjective, flat, and locally of finite presentation (see Lemmas 100.25.4 and 100.27.11). In other words, we have to show that

$[Y/G] \longrightarrow [Y/G \times _ Y G]$

is surjective, flat, and locally of finite presentation. This is true because the base change by the surjective, flat, locally finitely presented morphism $Y \to [Y/G \times _ Y G]$ is the morphism $G \to Y$.

Proof of (3). Observe that the diagram

$\xymatrix{ T_1 \times _{x_1, \mathcal{X}, x_2} T_2 \ar[d] \ar[r] & T_1 \times _{y_1, \mathcal{Y}, y_2} T_2 \ar[d] \\ \mathcal{X} \ar[r] & \mathcal{X} \times _\mathcal {Y} \mathcal{X} }$

is cartesian. Hence (3) follows from (2).

Proof of (4). This is true because

$\mathit{Isom}_\mathcal {X}(x_1, x_2) = (T \times _{x_1, \mathcal{X}, x_2} T) \times _{T \times T, \Delta _ T} T$

hence the morphism in (4) is a base change of the morphism in (3). $\square$

There are also:

• 2 comment(s) on Section 100.28: Gerbes

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).