The Stacks project

Lemma 101.38.4. Let

\[ \xymatrix{ \mathcal{X}_1 \ar[d] \ar[r]_{f_1} & \mathcal{Y}_1 \ar[d] \\ \mathcal{X}_2 \ar[r]^{f_2} & \mathcal{Y}_2 } \]

be a commutative diagram of algebraic stacks. Let $\mathcal{Z}_ i \subset \mathcal{Y}_ i$, $i = 1, 2$ be the scheme theoretic image of $f_ i$. Then the morphism $\mathcal{Y}_1 \to \mathcal{Y}_2$ induces a morphism $\mathcal{Z}_1 \to \mathcal{Z}_2$ and a commutative diagram

\[ \xymatrix{ \mathcal{X}_1 \ar[r] \ar[d] & \mathcal{Z}_1 \ar[d] \ar[r] & \mathcal{Y}_1 \ar[d] \\ \mathcal{X}_2 \ar[r] & \mathcal{Z}_2 \ar[r] & \mathcal{Y}_2 } \]

Proof. The scheme theoretic inverse image of $\mathcal{Z}_2$ in $\mathcal{Y}_1$ is a closed substack of $\mathcal{Y}_1$ through which $f_1$ factors. Hence $\mathcal{Z}_1$ is contained in this. This proves the lemma. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CPV. Beware of the difference between the letter 'O' and the digit '0'.