Lemma 100.37.6. Let $\mathcal{Z}$ be an algebraic stack. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks over $\mathcal{Z}$. If $\mathcal{X}$ is universally closed over $\mathcal{Z}$ and $f$ is surjective then $\mathcal{Y}$ is universally closed over $\mathcal{Z}$. In particular, if also $\mathcal{Y}$ is separated and of finite type over $\mathcal{Z}$, then $\mathcal{Y}$ is proper over $\mathcal{Z}$.

Proof. Assume $\mathcal{X}$ is universally closed and $f$ surjective. Denote $p : \mathcal{X} \to \mathcal{Z}$, $q : \mathcal{Y} \to \mathcal{Z}$ the structure morphisms. Let $\mathcal{Z}' \to \mathcal{Z}$ be a morphism of algebraic stacks. The base change $f' : \mathcal{X}' \to \mathcal{Y}'$ of $f$ by $\mathcal{Z}' \to \mathcal{Z}$ is surjective (Properties of Stacks, Lemma 99.5.3) and the base change $p' : \mathcal{X}' \to \mathcal{Z}'$ of $p$ is closed. If $T \subset |\mathcal{Y}'|$ is closed, then $(f')^{-1}(T) \subset |\mathcal{X}'|$ is closed, hence $p'((f')^{-1}(T)) = q'(T)$ is closed. So $q'$ is closed. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).