Lemma 13.36.4. Let $\mathcal{D}$ be a triangulated category. Let $\mathcal{D}' \subset \mathcal{D}$ be a full triangulated subcategory. The following are equivalent

the inclusion functor $\mathcal{D}' \to \mathcal{D}$ has a left adjoint, and

for every $X$ in $\mathcal{D}$ there exists a distinguished triangle

\[ K \to X \to X' \to K[1] \]in $\mathcal{D}$ with $X' \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{D}')$ and $\mathop{\mathrm{Hom}}\nolimits (K, Y') = 0$ for all $Y' \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{D}')$.

## Comments (0)