Lemma 13.40.8. Let $\mathcal{D}$ be a triangulated category. Let $\mathcal{B} \subset \mathcal{D}$ be a full triangulated subcategory. The following are equivalent

the inclusion functor $\mathcal{B} \to \mathcal{D}$ has a left adjoint, and

for every $X$ in $\mathcal{D}$ there exists a distinguished triangle

\[ A \to X \to B \to A[1] \]in $\mathcal{D}$ with $B \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{B})$ and $A \in \mathop{\mathrm{Ob}}\nolimits ({}^\perp \mathcal{B})$.

If this holds, then $\mathcal{B}$ is saturated (Definition 13.6.1) and if $\mathcal{B}$ is strictly full in $\mathcal{D}$, then $\mathcal{B} = ({}^\perp \mathcal{B})^\perp $.

## Comments (0)

There are also: