Lemma 36.21.2. Let f : X \to Y be a quasi-compact and quasi-separated morphism of schemes. If the right adjoints DQ_ X and DQ_ Y of the inclusion functors D_\mathit{QCoh}\to D exist for X and Y, then
Rf_* \circ DQ_ X = DQ_ Y \circ Rf_*
Proof. The statement makes sense because Rf_* sends D_\mathit{QCoh}(\mathcal{O}_ X) into D_\mathit{QCoh}(\mathcal{O}_ Y) by Lemma 36.4.1. The statement is true because Lf^* similarly maps D_\mathit{QCoh}(\mathcal{O}_ Y) into D_\mathit{QCoh}(\mathcal{O}_ X) (Lemma 36.3.8) and hence both Rf_* \circ DQ_ X and DQ_ Y \circ Rf_* are right adjoint to Lf^* : D_\mathit{QCoh}(\mathcal{O}_ Y) \to D(\mathcal{O}_ X). \square
Comments (0)