Lemma 22.23.2. Let $(A, \text{d})$ be a differential graded algebra. Let $M_ n$ be a system of differential graded modules. Then the derived colimit $\text{hocolim} M_ n$ in $D(A, \text{d})$ is represented by the differential graded module $\mathop{\mathrm{colim}}\nolimits M_ n$.
Proof. Set $M = \mathop{\mathrm{colim}}\nolimits M_ n$. We have an exact sequence of differential graded modules
by Derived Categories, Lemma 13.33.6 (applied the underlying complexes of abelian groups). The direct sums are direct sums in $D(\mathcal{A})$ by Lemma 22.22.4. Thus the result follows from the definition of derived colimits in Derived Categories, Definition 13.33.1 and the fact that a short exact sequence of complexes gives a distinguished triangle (Lemma 22.23.1). $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)