The Stacks project

Lemma 30.26.5. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of schemes which are locally of finite type over $S$.

  1. If $Y$ is separated over $S$ and $Z \subset X$ is a closed subset proper over $S$, then $f(Z)$ is a closed subset of $Y$ proper over $S$.

  2. If $f$ is universally closed and $Z \subset X$ is a closed subset proper over $S$, then $f(Z)$ is a closed subset of $Y$ proper over $S$.

  3. If $f$ is proper and $Z \subset Y$ is a closed subset proper over $S$, then $f^{-1}(Z)$ is a closed subset of $X$ proper over $S$.

Proof. Proof of (1). Assume $Y$ is separated over $S$ and $Z \subset X$ is a closed subset proper over $S$. Endow $Z$ with the reduced induced closed subscheme structure and apply Morphisms, Lemma 29.41.10 to $Z \to Y$ over $S$ to conclude.

Proof of (2). Assume $f$ is universally closed and $Z \subset X$ is a closed subset proper over $S$. Endow $Z$ and $Z' = f(Z)$ with their reduced induced closed subscheme structures. We obtain an induced morphism $Z \to Z'$. Denote $Z'' = f^{-1}(Z')$ the scheme theoretic inverse image (Schemes, Definition 26.17.7). Then $Z'' \to Z'$ is universally closed as a base change of $f$ (Morphisms, Lemma 29.41.5). Hence $Z \to Z'$ is universally closed as a composition of the closed immersion $Z \to Z''$ and $Z'' \to Z'$ (Morphisms, Lemmas 29.41.6 and 29.41.4). We conclude that $Z' \to S$ is separated by Morphisms, Lemma 29.41.11. Since $Z \to S$ is quasi-compact and $Z \to Z'$ is surjective we see that $Z' \to S$ is quasi-compact. Since $Z' \to S$ is the composition of $Z' \to Y$ and $Y \to S$ we see that $Z' \to S$ is locally of finite type (Morphisms, Lemmas 29.15.5 and 29.15.3). Finally, since $Z \to S$ is universally closed, we see that the same thing is true for $Z' \to S$ by Morphisms, Lemma 29.41.9. This finishes the proof.

Proof of (3). Assume $f$ is proper and $Z \subset Y$ is a closed subset proper over $S$. Endow $Z$ with the reduced induced closed subscheme structure. Denote $Z' = f^{-1}(Z)$ the scheme theoretic inverse image (Schemes, Definition 26.17.7). Then $Z' \to Z$ is proper as a base change of $f$ (Morphisms, Lemma 29.41.5). Whence $Z' \to S$ is proper as the composition of $Z' \to Z$ and $Z \to S$ (Morphisms, Lemma 29.41.4). This finishes the proof. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CYQ. Beware of the difference between the letter 'O' and the digit '0'.