Lemma 37.12.4. Let $f : X \to S$ be a morphism of locally Noetherian schemes. Let $Z \subset S$ be a closed subscheme with $n$th infinitesimal neighbourhood $Z_ n \subset S$. Set $X_ n = Z_ n \times _ S X$. If $X_ n \to Z_ n$ is flat for all $n$, then $f$ is flat at every point of $f^{-1}(Z)$.
Proof. This is a translation of Algebra, Lemma 10.99.11 into the language of schemes. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)