Lemma 84.4.2. Let $(A, I)$ be a henselian pair. Let $X$ be an algebraic space over $A$ such that the structure morphism $f : X \to \mathop{\mathrm{Spec}}(A)$ is proper. Let $i : X_0 \to X$ be the inclusion of $X \times _{\mathop{\mathrm{Spec}}(A)} \mathop{\mathrm{Spec}}(A/I)$. For any sheaf $\mathcal{F}$ on $X_{\acute{e}tale}$ we have $\Gamma (X, \mathcal{F}) = \Gamma (X_0, i^{-1}\mathcal{F})$.

**Proof.**
Choose a surjective proper morphism $Y \to X$ where $Y$ is a scheme, see Cohomology of Spaces, Lemma 69.18.1. Consider the diagram

Here $\mathcal{G}$, resp. $\mathcal{H}$ is the pullbackf or $\mathcal{F}$ to $Y$, resp. $Y \times _ X Y$ and the index $0$ indicates base change to $\mathop{\mathrm{Spec}}(A/I)$. By the case of schemes (Étale Cohomology, Lemma 59.91.2) we see that the middle and right vertical arrows are bijective. By Lemma 84.4.1 it follows that the left one is too. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (2)

Comment #5919 by Harry Gindi on

Comment #6114 by Johan on