Lemma 84.4.5. Let $S$ be a scheme. Let $f : Y \to X$ be a proper morphism of algebraic spaces over $S$. Let $\overline{x} \to X$ be a geometric point. For any sheaf $\mathcal{F}$ on $Y_{\acute{e}tale}$ the canonical map

is bijective.

Lemma 84.4.5. Let $S$ be a scheme. Let $f : Y \to X$ be a proper morphism of algebraic spaces over $S$. Let $\overline{x} \to X$ be a geometric point. For any sheaf $\mathcal{F}$ on $Y_{\acute{e}tale}$ the canonical map

\[ (f_*\mathcal{F})_{\overline{x}} \longrightarrow \Gamma (Y_{\overline{x}}, \mathcal{F}_{\overline{x}}) \]

is bijective.

**Proof.**
This is a special case of Lemma 84.4.4.
$\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)