Lemma 84.4.8. Let S be a scheme. Let f : X \to Y be a proper morphism of algebraic spaces. Let \overline{y} \to Y be a geometric point.
For a torsion abelian sheaf \mathcal{F} on X_{\acute{e}tale} we have (R^ nf_*\mathcal{F})_{\overline{y}} = H^ n_{\acute{e}tale}(X_{\overline{y}}, \mathcal{F}_{\overline{y}}).
For E \in D^+(X_{\acute{e}tale}) with torsion cohomology sheaves we have (R^ nf_*E)_{\overline{y}} = H^ n_{\acute{e}tale}(X_{\overline{y}}, E_{\overline{y}}).
Comments (0)