The Stacks project

Lemma 84.7.3. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. Let $\mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3$ be a complex of quasi-coherent $\mathcal{O}_ X$-modules. Set

\[ \mathcal{H}_{\acute{e}tale}= \mathop{\mathrm{Ker}}(\pi _ X^*\mathcal{F}_2 \to \pi _ X^*\mathcal{F}_3)/ \mathop{\mathrm{Im}}(\pi _ X^*\mathcal{F}_1 \to \pi _ X^*\mathcal{F}_2) \]

on $(\textit{Spaces}/X)_{\acute{e}tale}$ and set

\[ \mathcal{H}_{fppf} = \mathop{\mathrm{Ker}}(a_ X^*\mathcal{F}_2 \to a_ X^*\mathcal{F}_3)/ \mathop{\mathrm{Im}}(a_ X^*\mathcal{F}_1 \to a_ X^*\mathcal{F}_2) \]

on $(\textit{Spaces}/X)_{fppf}$. Then $\mathcal{H}_{\acute{e}tale}= \epsilon _{X, *}\mathcal{H}_{fppf}$ and

\[ H^ p_{\acute{e}tale}(U, \mathcal{H}_{\acute{e}tale}) = H^ p_{fppf}(U, \mathcal{H}_{fppf}) = 0 \]

for $p > 0$ and any affine object $U$ of $(\textit{Spaces}/X)_{\acute{e}tale}$.

Proof. For any object $f : U \to X$ of $(\textit{Spaces}/X)_{\acute{e}tale}$ consider the restriction $\mathcal{H}_{\acute{e}tale}|_{U_{\acute{e}tale}}$ of $\mathcal{H}_{\acute{e}tale}$ to $U_{\acute{e}tale}$ via the functor $i_ f^* = i_ f^{-1}$ discussed in Section 84.5. The sheaf $\mathcal{H}_{\acute{e}tale}|_{U_{\acute{e}tale}}$ is equal to the homology of complex $f^*\mathcal{F}_\bullet $ in degree $1$. This is true because $i_ f \circ \pi _ X = f$ as morphisms of ringed sites $U_{\acute{e}tale}\to X_{\acute{e}tale}$. In particular we see that $\mathcal{H}_{\acute{e}tale}|_{U_{\acute{e}tale}}$ is a quasi-coherent $\mathcal{O}_ U$-module. Next, let $g : V \to U$ be a flat morphism in $(\textit{Spaces}/X)_{\acute{e}tale}$. Since

\[ i_{f \circ g}^* \circ \pi _ X^* = (f \circ g)^* = g^* \circ f^* \]

as morphisms of sites $V_{\acute{e}tale}\to X_{\acute{e}tale}$ and since $g$ is flat hence $g^*$ is exact, we obtain

\[ \mathcal{H}_{\acute{e}tale}|_{V_{\acute{e}tale}} = g^*\left(\mathcal{H}_{\acute{e}tale}|_{U_{\acute{e}tale}}\right) \]

With these preparations we are ready to prove the lemma.

Let $\mathcal{U} = \{ g_ i : U_ i \to U\} _{i \in I}$ be an fppf covering with $f : U \to X$ as above. The sheaf property holds for $\mathcal{H}_{\acute{e}tale}$ and the covering $\mathcal{U}$ by (1) of Lemma 84.7.1 applied to $\mathcal{H}_{\acute{e}tale}|_{U_{\acute{e}tale}}$ and the above. Therefore we see that $\mathcal{H}_{\acute{e}tale}$ is already an fppf sheaf and this means that $\mathcal{H}_{fppf}$ is equal to $\mathcal{H}_{\acute{e}tale}$ as a presheaf. In particular $\mathcal{H}_{\acute{e}tale}= \epsilon _{X, *}\mathcal{H}_{fppf}$.

Finally, to prove the vanishing, we use Cohomology on Sites, Lemma 21.10.9. We let $\mathcal{B}$ be the affine objects of $(\textit{Spaces}/X)_{fppf}$ and we let $\text{Cov}$ be the set of finite fppf coverings $\mathcal{U} = \{ U_ i \to U\} _{i = 1, \ldots , n}$ with $U$, $U_ i$ affine. We have

\[ {\check H}^ p(\mathcal{U}, \mathcal{H}_{\acute{e}tale}) = {\check H}^ p(\mathcal{U}, \left(\mathcal{H}_{\acute{e}tale}|_{U_{\acute{e}tale}}\right)^ a) \]

because the values of $\mathcal{H}_{\acute{e}tale}$ on the affine schemes $U_{i_0} \times _ U \ldots \times _ U U_{i_ p}$ flat over $U$ agree with the values of the pullback of the quasi-coherent module $\mathcal{H}_{\acute{e}tale}|_{U_{\acute{e}tale}}$ by the first paragraph. Hence we obtain vanishing by Descent, Lemma 35.9.2. This finishes the proof. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0DGQ. Beware of the difference between the letter 'O' and the digit '0'.