Lemma 36.27.2. Let $S$ be a Noetherian scheme. Let $f : X \to S$ be a morphism of schemes which is locally of finite type. Let $E \in D(\mathcal{O}_ X)$ be perfect. Let $\mathcal{G}^\bullet $ be a bounded complex of coherent $\mathcal{O}_ X$-modules flat over $S$ with support proper over $S$. Then $K = Rf_*(E \otimes _{\mathcal{O}_ X}^\mathbf {L} \mathcal{G}^\bullet )$ is a perfect object of $D(\mathcal{O}_ S)$.
Proof. The object $K$ is perfect by Lemma 36.27.1. We check the lemma applies: Locally $E$ is isomorphic to a finite complex of finite free $\mathcal{O}_ X$-modules. Hence locally $E \otimes ^\mathbf {L}_{\mathcal{O}_ X} \mathcal{G}^\bullet $ is isomorphic to a finite complex whose terms are of the form
\[ \bigoplus \nolimits _{i = a, \ldots , b} (\mathcal{G}^ i)^{\oplus r_ i} \]
for some integers $a, b, r_ a, \ldots , r_ b$. This immediately implies the cohomology sheaves $H^ i(E \otimes ^\mathbf {L}_{\mathcal{O}_ X} \mathcal{G})$ are coherent. The hypothesis on the tor dimension also follows as $\mathcal{G}^ i$ is flat over $f^{-1}\mathcal{O}_ S$. $\square$
Comments (0)