Lemma 72.17.2. Let k be a field. Let X be a proper algebraic space over k. Let 0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0 be a short exact sequence of coherent modules on X. Then
\chi (X, \mathcal{F}_2) = \chi (X, \mathcal{F}_1) + \chi (X, \mathcal{F}_3)
Proof. Consider the long exact sequence of cohomology
0 \to H^0(X, \mathcal{F}_1) \to H^0(X, \mathcal{F}_2) \to H^0(X, \mathcal{F}_3) \to H^1(X, \mathcal{F}_1) \to \ldots
associated to the short exact sequence of the lemma. The rank-nullity theorem in linear algebra shows that
0 = \dim H^0(X, \mathcal{F}_1) - \dim H^0(X, \mathcal{F}_2) + \dim H^0(X, \mathcal{F}_3) - \dim H^1(X, \mathcal{F}_1) + \ldots
This immediately implies the lemma. \square
Comments (0)