The Stacks project

Lemma 101.33.8. Let $\pi : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks. If $\mathcal{X}$ is a gerbe over $\mathcal{Y}$, then $\pi $ is surjective and smooth.

Proof. We have seen surjectivity in Lemma 101.28.8. By Lemma 101.33.4 it suffices to prove to the lemma after replacing $\pi $ by a base change with a surjective, flat, locally finitely presented morphism $\mathcal{Y}' \to \mathcal{Y}$. By Lemma 101.28.7 we may assume $\mathcal{Y} = U$ is an algebraic space and $\mathcal{X} = [U/G]$ over $U$ with $G \to U$ flat and locally of finite presentation. Then we win by Lemma 101.33.7. $\square$


Comments (0)

There are also:

  • 1 comment(s) on Section 101.33: Smooth morphisms

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0DN8. Beware of the difference between the letter 'O' and the digit '0'.