Lemma 101.8.3. Let $\mathcal{X}$ be an algebraic stack.

1. If $\mathcal{X}$ is locally Noetherian then $|\mathcal{X}|$ is a locally Noetherian topological space.

2. If $\mathcal{X}$ is quasi-compact and locally Noetherian, then $|\mathcal{X}|$ is a Noetherian topological space.

Proof. Assume $\mathcal{X}$ is locally Noetherian. Choose a scheme $U$ and a surjective smooth morphism $U \to \mathcal{X}$. As $\mathcal{X}$ is locally Noetherian we see that $U$ is locally Noetherian. By Properties, Lemma 28.5.5 this means that $|U|$ is a locally Noetherian topological space. Since $|U| \to |\mathcal{X}|$ is open and surjective we conclude that $|\mathcal{X}|$ is locally Noetherian by Topology, Lemma 5.9.3. This proves (1). If $\mathcal{X}$ is quasi-compact and locally Noetherian, then $|\mathcal{X}|$ is quasi-compact and locally Noetherian. Hence $|\mathcal{X}|$ is Noetherian by Topology, Lemma 5.12.14. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).